• Title/Summary/Keyword: variable valve timing

Search Result 57, Processing Time 0.034 seconds

Development of Sintered Parts for Variable Valve Timing Unit

  • Nishita, Takashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.690-691
    • /
    • 2006
  • Variable valve timing unit, which is able to decrease environmental load and improve fuel economy is loaded onto many automobiles recently. This unit consists mainly of sprocket, housing and rotor. These parts are requested different properties according to environment. We produce sintered parts for variable valve timing unit by selecting compact, sinter process and special treatment according to demanded properties. In this paper, demanded properties of sintered parts for variable valve timing unit and adopted technique to satisfy them are presented.

  • PDF

Effect of Valve Lift and Timing on Internal Exhaust Gas Recirculation and Combustion in DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축 착화 엔진에서 밸브 양정과 개폐시기가 내부 배기가스 재순환과 연소에 미치는 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • Intake/exhaust valve timing and exhaust cam lift were changed to control the internal exhaust gas recirculation (IEGR) and combustion phase of homogeneous charge compression ignition (HCCI) engine. To measure the IEGR rate, in-cylinder gas was sampled during from intake valve close to before ignition start. The lower exhaust cam made shorter valve event than higher exhaust cam and made IEGR increase because of trapping the exhaust gas. IEGR rate was more affected by exhaust valve timing than intake valve timing and increased as exhaust valve timing advanced. In-cylinder pressure was increased near top dead center due to early close of exhaust valve. Ignition timing was more affected by intake valve timing than exhaust valve timing in case of exhaust valve lift 8.4 mm, while ignition timing was affected by both intake and exhaust valve timing in case of exhaust valve 2.5 mm. Burn duration with exhaust valve lift 2.5 mm was longer than other case due to higher IEGR rate. The fuel conversion efficiency with higher exhaust valve lift was higher than that with lower exhaust valve lift. The late exhaust and intake maximum open point (MOP) made the fuel conversion efficiency improve.

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

A Study on Flow Characteristics of Spark-Ignited Engine with Variable Intake Valve Closing Timing for Miller Cycle (LIVC 적용 밀러사이클 스파크점화기관의 유동특성 연구)

  • Chung, J.H.;Kang, S.J.;Kim, J.S.;Jeong, S.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • In this study, to research in-cylinder flow characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle. 3D simulation study were used 6 different intake valve profile with $CAD10^{\circ}$ gap for retard intake valve closing timing. Comparison of In-cylinder flow pattern characteristic were accompanied between Base and LIVC. And the efficiency of volume and the work of compression were analyzed with simulation study. When intake valve closing angle was retarded in $CAD50^{\circ}$, the pressure in cylinder was decreased about 12~13 bar and volume efficiency was reduced about 16%. The efficiency of volume and the work of compression were reduced on LIVC.

A Study on the Residual Gas Fraction in Cylinder by the Adjustment of Variable Valve Timing with Volumetric Efficiency (체적효율을 고려한 가변밸브 개폐시기의 조정에 의한 실린더내 잔류가스량에 관한 연구)

  • 남정길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.82-88
    • /
    • 2001
  • The EGR is needed fur one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated. That is a reason why we consider using the internal EGR system. The internal EGR is a system which reduces NOx by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper, characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results, residual gas fraction and volumetric efficiency in cylinder by variable valve timing were visualized.

  • PDF

Analysis of In-cylinder Flow in a Miller Cycle Engine with Variable IVC for HEV (밀러사이클 적용 HEV 엔진 실린더의 가변흡기밸브 닫힘각에 따른 실린더내 유동해석)

  • Kim, Sangmyeong;Sung, Gisu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • For reduction of $CO_2$ emission emitted from combustion engine, the developed nations have been focused on R&D of hybrid electric vehicle. Further more, many automobile companies are researching on various techniques related to engine used in HEV to enhance fuel economy. One of key techniques is miller cycle that control a valve timing to reduce compression stroke for saving energy and increase expansion stroke for high power. In this study, it was investigated the in-cylinder flow characteristics of miller cycle with variable intake valve timing by using the ANSYS simulation code. For simulation, the key analytic parameter defined as intake valve closing timing and cam profile. As main results, it was shown that LIVC cause a lower pressure inside cylinder and had better control turbulence intensity.

Variation of Exhaust Gas Temperature with the Change of Spark Timing and Exhaust Valve Timing During Cold Start Operation of an SI Engine (스파크 점화기관의 냉시동시 배기밸브 타이밍 및 점화시기 변화에 따른 배기가스의 온도변화)

  • Yang Chang-Seok;Park Young-Joon;Cho Yong-Seok;Kim Duk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.384-389
    • /
    • 2005
  • Experimental study of variation of exhaust gas temperature was carried out with the changes of spark timing and exhaust valve timing during the cold start operation of an SI engine. To investigate the effects of these variables on combustion stability, cylinder pressure and exhaust gas temperature were measured and analyzed. Experimental results showed that exhaust gas temperature increased when spark and exhaust valve timings were retarded from the baseline cases. However, combustion stability during cold start deteriorated under the retarded conditions. To increase exhaust gas temperature for fast warmup of catalysts while maintaining combustion stability, an optimal condition for spark and valve timing retard should be appied for the cold start period.

Flow and Combustion Characteristics according Control Strategy of Variable Valve Duration System for Compression Ignition Engine (압축착화기관용 가변밸브 듀레이션(VVD)시스템의 제어전략에 따른 유동 및 연소성능 해석)

  • Cho, Insu;Kim, Wootaek;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.45-50
    • /
    • 2020
  • Recently, global warming and environmental pollution are becoming more important, and fuel economy is becoming important. Each automobile company is actively developing various new technologies to increase fuel efficiency. CVVD(Continuously Variable Valve Duration) system means a device that continuously changes the rotational speed of the camshaft to change the valve duration according to the state of the engine. In this paper, VVT(Variable Valve Timing) and CVVD were applied to a single-cylinder diesel engine, and the characteristics of intake and exhaust flow rate and in-cylinder pressure characteristics were analyzed by numerical analysis. In order to analyze the effect of CVVD on the actual engine operation, the study was performed by setting the valve control and injection pressure as variables in two sections of the engine operating region. As a result, In the case of applying CVVD, the positive overlap with the exhaust valve is maintained, thus it is possible to secure the flow smoothness of air and increase the volumetric efficiency by improving the flow rate. The section 2 condition showed the highest peak pressure, but the pressure rise rate was similar to that of the VVT 20 and CVCD 20 conditions up to 40 bar due to the occurrence of ignition delay.

Performance Analysis of Variable Valve for Diesel Engine with Cam-in-Cam System (디젤엔진용 Cam-in-Cam시스템 적용 가변밸브 성능해석)

  • Jeong, S.C.;Park, J.M.;Kim, T.K.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • In this study, the effects of intake valve closing timing by using Cam-in-Cam system on combustion and emission characteristics for diesel engine were investigated under GT-POWER simulation environment. As a result, it was found that volumetric efficiency and effective compression ratio were decreased as the intake valve closing(IVC) timing is retarded due to its backflow effect. Also, we found that in-cylinder pressure, heat release rate and NOx emission were decreased as IVC timing was retarded. These show that the LIVC(late intake valve closing) can be effective to control AFR and mixing rate in diffusion combustion of diesel engine.

LPG-DME Compression Ignition Engine with Intake Variable Valve Timing (LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.