• Title/Summary/Keyword: variable single-track

Search Result 11, Processing Time 0.027 seconds

Study of a Variable Single-tracked Crawler for Overcoming Obstacles (가변형 단일 궤도를 이용한 장애물 극복방법에 관한 연구)

  • Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • In our paper, we propose an asymmetric single-tracked wheel system, and describe its structure and the method for maintaining the length of a transformable track system. And the method is reducing the gap of lengths. Therefore, we propose an efficient structure for transforming and explain motions with kinematics. Our transformable shape single-tracked mobile system has an advantage to overcome an obstacle or stairs by the variable arms in the single unity track system. But we will make the variable shape of tracked system get a drive that has a force to stand against a wall. In this case, we can consider this system to a rigid body and have a notice that this single tracked system is able to get vary shape with the variable arm angle. Considering forces balance along x-axis and y-axis, and moments balance around the center of the mass we have. If this rigid body is standing against a wall and doesn't put in motion, the force of flat ground and the rigid body sets an equal by a friction. In the same way, the force of a wall and the rigid sets an equal by a friction.

Obstacle Negotiation for the Rescue Robot with Variable Single-Tracked Mechanism (가변트랙형 메커니즘의 재난구조 로봇(VSTR)을 위한 장애물 극복)

  • Choi, Keun-Ha;Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kwak, Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1222-1229
    • /
    • 2007
  • In this paper, we propose a new obstacle negotiation method for the rescue robot. The rescue robot has a variable geometry single-tracked mechanism, so it can maximize a contact length with ground for the adaptability to off-road and pursue a stable system due to the lower center of gravity. In this research, we add the basis of autonomous navigation, driving mode control based on obstacle detection, to the robot to realize automation of mode transformation. Obstacle detection using PSD(Position Sensitive Device) infrared sensors gives active transformation of the track shape. Finally, experimental results about mentioned are presented.

Variable Shapes Single-Tracked of Belt Type Wheel Mechanism (단일 궤도를 갖는 가변형 로봇 바퀴 구조)

  • Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.198-202
    • /
    • 2009
  • Urban Search and Rescue (USAR) involves locating, rescuing (extricating), and medically stabilizing victims trapped in confined spaces. In this paper we state the current approach to USAR, address the limitations and discuss the way for moving in rugged topography. To achieve objectives such as surveillance, reconnaissance, and rescue, it is necessary to develop a driving mechanism that can handle rugged geographical features. We propose a new type of driving mechanism for a rescue robot that has a variable shape single-track. By using a variety shapes, it can get the gain of steering and rotating and the ability to overcome stairs. In this paper, we analyzed the design parameters for making variable transform shapes and determined the specifications of the robot to enhance adaptability to stairs.

Independent MPP Tracking Method of Hybrid Solar-Wind Power Conditioning Systems Using Integrated Dual-Input Single-PWM-Cell Converter Topology

  • Thenathayalan, Daniel;Ahmed, Ashraf;Choi, Byung-Min;Park, Jeong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.790-802
    • /
    • 2017
  • This paper proposes the modeling and control strategy to track the MPPs of hybrid PV and Wind power systems, using a new dual input boost converter. The dual input power conditioning system with an independent MPPT control scheme is introduced with minimum number of circuit elements in order to reduce the switching loss, size and cost of the system. Since the operating conditions for the PV and Wind power systems are very distinct from each other, an efficient and superior control system is required to track the MPPs of both renewable sources with the use of a simply-structured single-ended single-inductor converter. The design of Power-Conditioning System (PCS) and detail control strategy are presented in this paper. To provide independent tracking of MPPs, a variable duty-cycle control strategy is employed for the wind system and a variable frequency strategy is employed for the PV system. Finally, the proposed dual-input converter for hybrid power conditioning system is implemented and the hardware test results are presented. From the hardware experiment, it is concluded that the proposed system successfully tracks the MPPs of both of the renewable power systems independently.

Variable Geometry Single-Tracked Mechanism for Rescue Robot (구조 로봇에 적합한 가변형 단일 트랙 메커니즘)

  • Im, Sung-Kyun;Park, Dong-Il;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.720-724
    • /
    • 2004
  • This paper introduces a new type of driving mechanism for rescue robot that has a variable geometry single-track which satisfies the pre-conditions of rescue robot. This mechanism is a symmetric configuration that has dual directions and prepares against overturn. By using transformation, it can reduce the energy consumption in steering and rotating. And also it maximizes the ability to overcome obstacles, like steps. It is designed to make the size of robot compact and to have the low center of gravity in driving on steps. Finally, we optimized the design variables of components determining the shape of reverse-trapezoid frame to enhance the adaptability to 4 phases of climbing steps.

  • PDF

A New Driving Mechanism to Allow a Rescue Robot to Climb Stairs

  • Lim, Sung-Kyun;Park, Dong-II;Kwak, Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.3-7
    • /
    • 2007
  • There have been numerous studies directed toward the development of driving mechanisms for off-road mobility and rescue robots. To achieve surveillance, reconnaissance, and rescue, it is necessary for robots to have a driving mechanism that can handle off-road environments, We propose a new type of single-track driving mechanism with a variable geometry for a rescue robot, This mechanism has a symmetric configuration so that the robot can advance in two directions and also remain operable when overturned. By transforming its geometry, the robot can reduce energy consumption in steering and rotating as well as maximize its ability to climb obstacles such as stairs. The robot is also designed to have a compact size and low center of gravity to facilitate driving when on a set of stairs. In this paper, we analyzed the design parameters of the robot for the four phases of climbing stairs and determined the specifications needed to enhance its adaptability.

Trajectory tracking and active vibration suppression of a smart Single-Link flexible arm using a composite control design

  • Mirzaee, E.;Eghtesad, M.;Fazelzadeh, S.A.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.103-116
    • /
    • 2011
  • This paper is concerned with the trajectory tracking and vibration suppression of a single-link flexible arm by using piezoelectric materials. The dynamics of a single flexible arm with PZT patches as sensor and actuator is derived using extended Hamilton's principle. Resulting equations show that the coupled beam dynamics including beam vibration and its rigid in-plane rotation takes place in two different time scales. By using singular perturbation theory, the system dynamics is divided into two subsystems. Then, a composite control scheme is elaborated that makes the orientation of the arm track a desired trajectory while suppressing its vibration. The proposed controller has two parts: one is a tracking controller designed for the slow (rigid) subsystem, and the other one is a stabilizing controller for the fast (flexible) subsystem. The outputs considered for the system are angular position of the hub and voltage of the sensor mounted on the structure. To avoid requiring further measurements of beam vibration and also angular velocity of the hub for the fast and slow control laws, respectively, two sliding mode observers for estimating the unknown states are also designed.

Photovoltaic System for SPIM Vector control (SPIM 벡터제어를 위한 태양광 발전 시스템)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the photovoltaic(PV) water pumping system with a maximum power point tracking(MPPT). The wale- pumping system uses a variable speed single phase induction motor(SPIM) driven a centrifugal pimp by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage ($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

Vector Control of Single Phase Induction Motor using PV System (PV 시스템을 이용만 단상유도전동기의 벡터제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-58
    • /
    • 2009
  • This paper presents the vector control of single phase induction motor(SPIM) to operate water pumping system using PV system with a maximum power point tracking(MPPT). The water pumping system uses a variable speed SPIM driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

Voctor Control of Single Phase Induction Motor using PV system (PV 시스템을 이용한 단상유도전동기의 벡터제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.195-197
    • /
    • 2007
  • The water pumping system uses a variable speed single phase induction motor driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage$(V_{dq})$, current$(I_{dq})$, speed of motor and torque.

  • PDF