• Title/Summary/Keyword: variable head permeability

Search Result 7, Processing Time 0.025 seconds

Characteristics of Saturated Hydraulic Conductivity in Steel Making Slag and Sludge according to Mixing Rate of Bentonite (벤토나이트 혼합율에 따른 제강 슬래그 및 슬러지의 투수 특성 변화)

  • Woo, Won-Jae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.52-61
    • /
    • 2000
  • Permeability is important factor in the geotechnical problems, such as seepage discharge and dissipation of excess pore water pressure. The Kozeny-Carman equation works well for graded soils but serious discrepancies are found in clays. Major factor for these discrepancies is the tortuous flow path and unequal pore size. To estimate the permeability of fine grained soils, a permeability equation in which swelling potential is coupled with Kozeny-Carman equation is proposed in this study. To verify proposed equation, a series of variable head permeability test was carried out for steel making slag and sludge mixed with bentonite. The coefficients of permeability which is measured in the laboratory is compared with the values by the proposed equation. From the comparison, it is shown that the proposed equation can predict the coefficient of permeability of clays with satisfaction. As steel making slag and sludge is industry waste, it is reused as material of road foundation and cement but the rate of use is low. It mixed sodium-bentonite with high swelling property and permeability decrease effect. Then, Admixture investigates reuse possibility as liner of waste fill.

  • PDF

A Experimental Study on the Proper Particle Gradation of Sub-base to Consider the Recent Climate Change (기후변화를 고려한 포장 보조기층의 적정입도분포에 관한 실험연구)

  • Choi, Jaesoon;Han, Nuri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.51-56
    • /
    • 2013
  • Recently, a top record of hourly-based rainfall has been changed annually and flood damages of road have increased. To solve this problem, pavements for drainage were developed and practically constructed but there was no considerations on sub-base. In this research, we proposed standard for distribution of particle size of sub-base to consider strength characteristic and drainage property. We focused to compare coefficients strength and permeability by laboratory tests. Prior to tests, 4 samples were selected under the consideration on the international or domestic design guideline. In the tests, strength characteristics were compared with resilient modulus. Also, permeability characteristics were compared with coefficient of upward and downward permeability. Resilient modulus was determined with MR test using cyclic triaxial testing system. Two permeability tests were carried out. One is variable head permeability test for downward drainage and the other is Rowe Cell test for upward drainage. In the case of Rowe Cell test, middle-sized sampler with 150mm diameter was used for this study. Consequentially, we tried to find the optimum distribution of particle size to satisfy both of strength and permeability characteristics for sub-base.

Research on Characteristics of Multifunctional Soil Binder Based on Polyacrylamide (폴리아크릴아마이드를 기반으로 하는 다기능성 토양안정제의 특성에 관한 연구)

  • Kim, Jin Kyung;Kim, Dae Ho;Joo, Sang Hyun;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-161
    • /
    • 2018
  • For the efficient recovering of collapsed sloped soil, using a soil binder that can support the soil strongly and help the growth of plants is very important. The soil binder should also have functions of recovering the soil ecologically as well as be environmental friendly materials. In this research, optimum values of the water content and permeability and direct shear strength were searched by adding the water absorbent and coagulant into the soil binder. The polyacrylamide (PAM) with various anionic strength, super absorbent polymer (SAP) and cellulose ether (CE) were used as a soil binder, water absorbent and coagulant, respectively. Effects of the soil binder on the characteristics of soil were observed by changing the mixing ratio of PAM, SAP and CE. Experimental results showed that the soil binder increased the direct shear strength tens of times and the water content around two times, whereas decreased the water permeability. Also, the addition of CE to increase the coagulation of SAP increased more of the direct shear strength and water content.

Permeability Effect of Decomposed Granite Soil under the Influence of Crushability and Compaction Energy (화강풍화토(花崗風化土)의 파쇄(破碎) 및 다짐에너지가 투수성(透水性)에 미치는 영향(影響))

  • Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 1983
  • This paper is concerned with the permeability through a decomposed granite soil layer which is influnced by change of grain sizes and crushed soils made by varied compaction energy. The change in the content of crushed soils can be described in terms of the ratio of surface area ($S_w{^{\prime}}/S_w $). The experiments were carried out to obtain the relationships of the coefficient of permeability(K) versus the optimum moisture content($w_{opt}$) by the variable head permeability test with the samples that were preapared by compaction test. The results are found as follows; (1) By the change in compaction energy, the crush ratio increased whereas the void ratio decreased with a larger maximum dry density running in parallel with the zero air void curve. (2) The ratio of surface area was $0.33(P)^{0.96}$ in $S_w{^{\prime}}/S_w $ with no relation to the compaction energy. (3) The grain size which produced the largest crush of soil particles ranged from 0.5 to 1 millimetre (4) The relationship of K versus $e^3$/1+e appeared as a straight line on the full-log-scale paper under the optimum moisture state. (5) As the compaction energy was larger, the passing percentage of #200-sieve grains increased linearly. The increment in the surface area ratio was deemed to have been caused by the decreased in the permeability.

  • PDF

Optimization of Distillation-Pervaporation Membrane Hybrid Process for Separation of Water/Organic Solvent Mixtures (물/유기용매 분리를 위한 증류-투과증발막 혼성공정의 최적화)

  • Yang, Jeongin;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.29-41
    • /
    • 2018
  • Separating a mixture having an azeotrope or low relative volatility with single distillation column is difficult. Separating water-acetic acid mixture and water-ethanol mixture with a distillation column consumes a lot of energy. Pervaporation membrane can be used to separate the mixture in the concentration region where separation is difficult with distillation. We simulated a distillation-membrane hybrid process where membrane is located on the head of the distillation column for efficient separation of water-acetic acid and water-ethanol mixture. Permeability data were obtained from experiments and literature. We formulated an optimization problem for the process with total annual cost (TAC) as an objective function and major design variables as optimization variables. Major optimization variable affecting TAC of the hybrid process was shown to be distillate concentration. We also suggested a simplified optimization procedure to get a close-to-optimal solution.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF