• Title/Summary/Keyword: variable curvature friction pendulum

Search Result 2, Processing Time 0.014 seconds

Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions

  • Shahbazi, Parisa;Taghikhany, Touraj
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • Variable Curvature Friction Pendulum (VCFP) bearing is one of the alternatives to control excessive induced responses of isolated structures subjected to near-fault ground motions. The curvature of sliding surface in this isolator is varying with displacement and its function is non-spherical. Selecting the most appropriate function for the sliding surface depends on the design objectives and ground motion characteristics. To date, few polynomial functions have been experimentally tested for VCFP however it needs comprehensive parametric study to find out which one provides the most effective behavior. Herein, seismic performance of the isolated structure mounted on VCFP is investigated with two different polynomial functions of the sliding surface (Order 4 and 6). By variation of the constants in these functions through changing design parameters, 120 cases of isolators are evaluated and the most proper function is explored to minimize floor acceleration and/or isolator displacement under different hazard levels. Beside representing the desire sliding surface with adaptive behavior, it was shown that the polynomial function with order 6 has least possible floor acceleration under seven near-field ground motions in different levels.

Functionally upgraded passive devices for seismic response reduction

  • Chen, Genda;Lu, Lyan-Ywan
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.741-757
    • /
    • 2008
  • The research field of structural control has evolved from the development of passive devices since 1970s, through the intensive investigation on active systems in 1980s, to the recent studies of semi-active control systems in 1990s. Currently semi-active control is considered most promising in civil engineering applications. However, actual implementation of semi-active devices is still limited due mainly to their system maintenance and associated long-term reliability as a result of power requirement. In this paper, the concept of functionally upgraded passive devices is introduced to streamline some of the state-of-the-art researches and guide the development of new passive devices that can mimic the function of their corresponding semi-active control devices for various applications. The general characteristics of this special group of passive devices are discussed and representative examples are summarized. Their superior performances are illustrated with cyclic and shake table tests of two example devices: mass-variable tuned liquid damper and friction-pendulum bearing with a variable sliding surface curvature.