• Title/Summary/Keyword: variable cross section

Search Result 188, Processing Time 0.022 seconds

Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation

  • Duy, Hien Ta;Van, Thuan Nguyen;Noh, Hyuk Chun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.1033-1049
    • /
    • 2014
  • The free vibration of functionally graded material (FGM) beams on an elastic foundation and spring supports is investigated. Young's modulus, mass density and width of the beam are assumed to vary in thickness and axial directions respectively following the exponential law. The spring supports are also taken into account at both ends of the beam. An analytical formulation is suggested to obtain eigen solutions of the FGM beams. Numerical analyses, based on finite element method by using a beam finite element developed in this study, are performed in order to show the legitimacy of the analytical solutions. Some results for the natural frequencies of the FGM beams are given considering the effect of various structural parameters. It is also shown that the spring supports show the greatest effect on the natural frequencies of FGM beams.

Structural Dynamic Analysis of Low Vibrating Composite Helicopter Rotor Blades (복합재료 헬리콥터 로터 블레이드의 저진동 설계에 관한 연구)

  • Kee, Young-Jung;Shim, Jeong-Wook;Lee, Myeong-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.902-905
    • /
    • 2004
  • Recently, the composite materials are widely used for manufacturing the helicopter rotor blades. furthermore, composites show great potential on the design of rotor blades due to the advantages of strength, durability and weight of the materials. To keep with this advantages, it is necessary to calculate natural frequencies of a rotating blades for avoiding resonance. In this paper, the structural design process of airfoil cross section is introduced, and natural frequencies of composite rotor blades with variable rpm we investigated.

  • PDF

Pressure Ripple Reduction of Hydraulic Pump-Motor in HST (HST용 유압폄프.모터의 압력맥동 저감 특성)

    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.117-123
    • /
    • 2003
  • This paper deals with pressure ripple and noise reduction characteristics for a hydrostatic transmission(HST) consisting of a variable axial piston pump connected in an open loop to a fixed displacement axial piston motor. Pressure ripples in HST is major source of vibration, which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube type hydraulic filter proposes to absorb pressure ripples with the high frequencies components to achieve better noise attenuation in HST. The basic principle tube is applied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimently confirmed that a hydraulic filter is absorbed to be about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and here, should provide a means of designing a quieter HST.

  • PDF

Flexural-Torsional Free Vibrations of Circular Strip Foundation with Variable Breadth on Pasternak Soil (Pasternak지반으로 지지된 변화폭 원호형 띠기초의 휨-비틀림 자유진동)

  • Lee, Byoung Koo;Park, Kwang Kyou;Kang, Hee Jong;Yoon, Hee Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.539-548
    • /
    • 2007
  • This paper deals with flexural-torsional free vibrations of the circular strip foundation with the variable breadth on Pasternak soil. The cross-section of the strip foundation is chosen as the rectangular one with the constant thickness and variable breadth, which is symmetrical about the mid-arc. Also, the foundation that supports the circular strip is modeled as the Pasternak soil with the shear layer. Ordinary differential equations accompanying the boundary conditions are derived. In the governing equations, the transverse, rotatory and torsional inertias are included. These equations are solved numerically and four lowest frequencies are obtained. In the numerical results, the effects of foundation parameters on frequencies are extensively investigated. It is expected that the theories and numerical results of this study can be used in the dynamic design of strip foundations.

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

The Effect of Mandibular Protrusion on Dynamic Changes in Oropharyngeal Caliber (하악의 전방이동이 구인두 내경의 동적 변화에 미치는 영향)

  • Jung, Jae-Kwang;Hur, Yun-Kyung;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.35 no.3
    • /
    • pp.193-202
    • /
    • 2010
  • The purpose of this study was to determine the sites of narrowing/obstruction and to measure the regional severity of narrowing through the evaluation of dynamic changes in upper-airway of healthy subjects. The selected 9 subjects were proved not to have any sleep-related disorder such as snoring or obstructive sleep apnea through clinical examination, radiological examination, sleep study with a portable recording system. Afterward, the Electron Beam Tomography was performed during the waking and sleeping state of subjects, with their mandible in resting and protruded position. Intravenous injection of Dormicum$^{(R)}$ was used for the induction of sleep. The maximum and minimum cross-sectional areas at each airway level during tidal ventilation were measured and the Collapsibility Index for each level of cross-section was also computed. In a comparison with results under variable conditions, the result was showed that the significant difference between each airway level divided with upper, middle, lower region of upper airway is not observed in the average minimum cross-sectional areas and Collapsibility Index. The significant difference only between in wake and sleep state was observed in the average minimum cross-sectional area at the lower region. Also, in wake state, the significant difference between resting and protrusive position of mandible for the average minimum was also observed in cross-sectional area at middle region. In sleep state, no significant difference between resting and protrusive position of mandible was observed in cross-sectional area and the Collapsibility Index.

Free Vibrations of Arbitrary Tapered Beams with Static Deflections due to Arbitrary Distributed Dead Loads (임의분포 사하중에 정적변위를 갖는 변단면 보의 자유진동)

  • Lee, Byoung-Koo;Lee, Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.50-57
    • /
    • 1996
  • A numerical method is presented to obtain the natural frequencies and mode shapes of the arbitrary tapered beams with static deflection due to arbitrary distributed dead loads. The differential equation governing free vibration of such beams is derived and solved numerically. The double integration method using the trapezoidal rule is used to solve the static behaviour of beams loaded arbitrary distributed dead load. Also, the Improved Euler method and the determinant search method are used to integrate the differential equation subjected to the boundary conditions and to determine the natural frequencies of the beams, respectively. In the numerical examples, the various geometries of the beams are considered : (1) linearly tapered beams as the arbitrary variable cross-section, (2) the triangular, sinusoidal and uniform loads as the arbitrary distributed dead loads and (3) the hinged-hinged, clamped-clamped and hinged-clamped ends as the end constraints. All numerical results are shown as the non-dimensional forms of the system parameters. The lowest three natural frequencies versus load parameter, slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with and without the effects of static deflection are presented in the figure. According to the numerical results obtained in this analysis, the following conclusions may be drawn : (1) the natural frequencies increase when the effects of static deflections are included, (2) the effects are larger at the lower modes than the higher ones and (3) it should be betteF to include the effect of static deflection for calculating the frequencies when the beams are supported by both hinged ends or one hinged end.

  • PDF

Numerical Study to Improve the Flow Uniformity of Blow-Down HVAC Duct System for a Train (전동차용 Blow-Down HVAC 덕트 시스템의 유동 균일도 향상을 위한 수치적 연구)

  • Kim, Joon-Hyung;Rho, Joo-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • A HVAC(Heating Ventilation and Air Conditioning) is adapted to increase the comfort of the cabin environment for train. The train HVAC duct system has very long duct and many outlets due to the shape of a train set. the duct cross section shape is limited by a roof structure and equipments. Therefore, the pressure distribution and flow uniformity is an important performance indicator for the duct system. In this study, the existing blow down type HVAC duct system for a train was supplemented to improve the flow uniformity by applying a design method combining design of experiment (DOE) with numerical analysis. The design variables and the test sets were selected and the performance for each test set was evaluated using CFD(Computational Fluid Dynamics). The influence of each design variable on the system performance was analysed based on the results of the performance evaluation on the test sets. Furthermore, the optimized model, whose the flow uniformity was improved was produced using the direct optimization(gradient-based method). Finally, the performance of the optimized model was evaluated using numerical analysis, and it was confirmed that its flow uniformity has indeed improved.

A Compatibility Study on Blank Support Structure for Large and Curved Thick Plate Forming (대곡면 후곡판 성형을 위한 블랭크 지지구조의 적합성 연구)

  • Lim, M.R.;Kwak, B.S.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.335-346
    • /
    • 2019
  • Thick plate forming is presented to manufacture a large and curved member of steam turbine diaphragm. Due to three-dimensional asymmetry of target geometry, it is hard to consistently keep the blank position in die cavity between forming punch and die. In order to relieve the position instability of the blank during the thick plate forming, a blank support structure is proposed to be composed of guide pins and linear bearing, and blank guide arm enlarged from both longitudinal ends of the thick blank. In this study, parametric investigations with regard to the geometric position and width of the blank guide arm are carried out. As main geometric parameters, 2 positions such as maximum curvature region and minimum one on a curved cross-section profile of the target shape are selected, and 14 widths of the blank guide arm are considered. Using 28 variable combinations, three-dimensional numerical simulations are performed to predict the appropriate range of the process parameters. The compatibility and validity of the blank support structure with the blank guide arm for the thick plate forming is verified through the thick plate forming experiments.