• Title/Summary/Keyword: vapour pressure deficit

Search Result 4, Processing Time 0.021 seconds

Effects of Air Current Speed on the Microclimates of the Plug Stand under Artificial Light (기류속도가 인공광하에서 공정육묘 개체군의 미기상에 미치는 영향)

  • 김용현;고재풍수
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.160-166
    • /
    • 1996
  • Objective of this study was to investigate the effects of all current speed on the microclimates above and inside the plug stand under artificial light. Maximum air temperature appeared near the top of the plug stand. Difference in air temperature inside the plug stand increased with the decreasing air current speed. Difference in relative humidity(DRH) to the relative humidity at the Inlet of the main air flow conditioner Inside and above the plug stand decreased with the increasing air current speed. Relative humidity inside the plug stand was 10-15% higher than that above the plug stand. DRH inside a stand of plug at air current speed of 0.3m s$^{-1}$ was about two times as many as that at air current speed of 0.9 m s$^{-1}$ . DRH inside the plug stand was 2.8-6.5% higher at LAI of 2.6 than that at LAI of 0.5. Gradient for the vapour pressure deficit was distinctly appeared at the low air current speed. Direction of vapour pressure flux is from the medium surface upwards. Difference in vapour pressure(DVPD) to the vapour pressure deficit at the inlet of the main air flow conditioner inside and above the plug stand decreased with the increasing height above the medium surface. DVPD inside the plug stand was 0.3-0.4㎪ higher at air current speed of 0.9m s$^{-1}$ than that at air current speed of 0.3m s$^{-1}$ . Results for the effects of air current speed on the relative humidity and vapour pressure deficit indicated that the microclimates above and inside the plug stand at the rear region in plug trays were slightly unfavorable compared to those at middle region.

  • PDF

Using Leaf Temperature for Irrigation Scheduling in Greenhouse (온실작물의 관개계획의 수립을 위한 엽온의 활용)

  • 이남호;이훈선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.103-112
    • /
    • 2001
  • The development of infrared thermometry has led many researchers to use plant temperatures, and specifically the temperature of the crop canopy in the field, for estimating the water stress of a crop. The purpose of this study was to evaluate the role of leaf temperature in irrigation scheduling. An experiment was carried out in a greenhouse with chinese cabbage. Leaf temperature was measured with infrared thermometry and evapotranspiration of the crop was measured by lysimeters. Influence of the difference between leaf temperature and air temperature on crop evapotranspiration was evaluated under varying water stress condition. A further objective was to evaluate the effect of other climatic variables on the relationship between evapotranspiration and temperature difference between leaf and air. A statistical model for estimating evapotranspiration using the temperature difference, relative humidity. and radiation was developed and tested. Crop water stress index was calculated using vapour pressure deficit and the temperature difference. Relations between the crop water stress index and crop evapotranspiration was tested. The index was closely related with evapotranspiration.

  • PDF

Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings

  • Yamaguchi, Masahiro;Otani, Yoko;Takeda, Kenta;Lenggoro, I. Wuled;Ishida, Atsushi;Yazaki, Kenichi;Noguchi, Kyotaro;Sase, Hiroyuki;Murao, Naoto;Nakaba, Satoshi;Yamane, Kenichi;Kuroda, Katsushi;Sano, Yuzou;Funada, Ryo;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.259-267
    • /
    • 2012
  • To clarify the effects of black carbon (BC) particles on growth and gas exchange rates of Asian forest tree species, the seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to BC particles with sub-micron size for two growing seasons from 1 June 2009 to 11 November 2010. The BC particles deposited after the exposure to BC were observed on the foliar surface of the 4 tree species. At the end of the experiment, the amount of BC accumulated on the foliar surface after the exposure to BC aerosols were 0.13, 0.69, 0.32 and 0.58 mg C $m^{-2}$ total leaf area in F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings, respectively. In August 2010, the exposure to BC particles did not significantly affect net photosynthetic rate under any light intensity, stomatal diffusive conductance to water vapour ($g_s$), stomatal limitation of photosynthesis, response of $g_s$ to increase in vapour pressure deficit and leaf temperature under light saturated condition in the leaves or needles of the seedlings. These results suggest that the BC particles deposited on the foliar surface did not reduce net photosynthesis by shading, did not increase leaf temperature by absorption of irradiation light, and did not induce plugging of stomata in the leaves or needles of the seedlings. There were no significant effects of BC particles on the increments of plant height and stem base diameter during the experimental period and the whole-plant dry mass at the end of the experiment. These results indicate that the exposure to BC particles with sub-micron size for two growing seasons did not significantly affect the growth and leaf or needle gas exchange rates of F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings.

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF