• 제목/요약/키워드: vapour effect

검색결과 67건 처리시간 0.022초

활성탄 첨가에 따른 담배용 필터지의 이화학적 특성 (Physical and Chemical Properties of Charcoal Added Paper for Cigarette Filter)

  • 이문용;전양;김영호;이정일
    • 펄프종이기술
    • /
    • 제31권4호
    • /
    • pp.76-83
    • /
    • 1999
  • This study was carried to investigate optimum conditions of charcoal added paper in making cigarette filter for the removal of smoke contents of cigarettes. We investigated the physical properties of charcoal added paper according to the ratio of pulps, the amounts of characoal , the weight of sheets and crimping conditions in dry method, and then analyzed the smoke contents of cigarettes. The results obtained were as follows. 1. Sw-BKP was higher than Hw-BKP in methylene blue absorption by UV test. 2. Charcoal had an effect on stiffness for decreasing factor greatly , while the addition amounts of Sw-BKP and high weigth of sheets increased it, and the interaction of weight of sheets and charcoal was higher than other factors. 3. Tear index decreased by charcoal addition greatly, on the other hand high weight of sheets and Sw-BKP/Hw-BKP ratio increased ter, and the interaction of pulps and chacoal acted on major factors. 4. We estimated crimp index with sensory evaluation , and charcoal hand an effect on decreasing factor in crimping greatly, while the interaction of weight of sheets and pulp ratio was higher than others. 5. In the case of charcoal added paper filter, tar removal efficiency of smoke contents was higher but about 6% than cigarette filter. Especially vapour phase(aldehyde) in smoke contents was removed greatly.

  • PDF

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF

저압화학기상 성장법으로 제작된 $Si_{x}O_{y}N_{z}$의 알칼리이온 감지성에 관한 연구 (A Study on Alkali ion-Sensitivity of $Si_{x}O_{y}N_{z}$ Fabricated by Low Pressure Chemical Vapor Deposition)

  • 신백균;이덕출
    • 센서학회지
    • /
    • 제6권3호
    • /
    • pp.200-206
    • /
    • 1997
  • 열산화시킨 실리콘 웨이퍼 위에 저압화학기상성장법으로 $SiCl_{2}H_{2}$, $NH_{3}$$N_{2}O$ 기체를 사용하여 실리콘 옥시나이트라이드($Si_{x}O_{y}N_{z}$) 층을 제작하였다. 세 가지의 다른 조성이 기체 유속비($NH_{3}/N_{2}O$)를 각기 0.2, 0.5 및 2로 변화시키고 $SiCl_{2}H_{2}$의 기체 유속은 고정시킴으로써 얻어졌다. 엘립소메트리와 HFCV(High Frequency Capacitance-Voltage) 측정법을 채택하여 굴절율, 유전율 및 조성의 차이를 각각 조사했다. 실리콘 옥시나이트라이드는 내부에 포함된 실리콘 나이트라이드 성분량에 관계없이 용액 중에서 순수한 실리콘 나이트라이드와 유사한 안정성을 보유했다. 실리콘 옥시나이트라이드 층 알칼리이온 감지성의 크기 순서는 실리콘 나이트라이드 성분량에 영향을 받았다. 보다 나은 알칼리이온 감지성이 실리콘 옥시나이트라이드의 벌크 내에 있는 실리콘 디옥시드의 성분량을 증가시킴으로써 얻어졌다.

  • PDF

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • 박제식;이철경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

Nano-scale Friction Properties of SAMs with Different Chain Length and End Groups

  • ;윤의성;한흥구;공호성
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.13-16
    • /
    • 2005
  • Friction characteristics at nano-scale of self-assembled monolayers (SAMs) having different chain lengths and end groups were experimentally studied.51 order to understand the effect of the chain length and end group on the nano-scalefriction: (1) two different SAMs of shorter chain lengths with different end groups such as methyl and phenyl groups, and (2)four different kinds of SAMs having long chain lengths (C10) with end groups of fluorine and hydrogen were coated on siliconwafer (100) by dipping method and Chemical Vapour Deposition (CVD) technique. Their nano-scale friction was measuredusing an Atomic Force Microscopy (AFM) in the range of 0-40 nN normal loads. Measurements were conducted at the scanning speed of 2 $mu$m/s for the scan size of 1$mu$m x 1 $mu$m using a contact mode type $Si_3N_4$ tip (NPS 20) that had a nominal spring constant0.58 N/m. All experiments were conducted at anlbient temperature (24 $pm$1$circ$C) and relative humidity (45 $pm$ 5%). Results showedthat the friction force increased with applied normal load for all samples, and that the silicon wafer exhibited highest frictionwhen compared to SAMs. While friction was affected by the inherent adhesion in silicon wafer, it was influenced by the chainlength and end group in the SAMs. It was observed that the nano-friction decreased with the chain length in SAMs. In the caseof monolayers with shorter length, the one with the phenyl group exhibited higher friction owing to the presence of benBenerings that are stiffer in nature. In the case of SAMs with longer chain length, those with fluorine showed friction values relativelyhigher than those of hydrogen. The increase in friction due to the presence of fluorine group has been discussed with respect tothe siBe of the fluorine atom.

Experimental and modelling study of clay stabilized with bottom ash-eco sand slurry pile

  • Subramanian, Sathyapriya;Arumairaj, P.D.;Subramani, T.
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.523-539
    • /
    • 2017
  • Clay soils are typical for their swelling properties upon absorption of water during rains and development of cracks during summer time owing to the profile desorption of water through the inter-connected soil pores by water vapour diffusion leading to evaporation. This type of unstable soil phenomenon by and large poses a serious threat to the strength and stability of structures when rest on such type of soils. Even as lime and cement are extensively used for stabilization of clay soils it has become imperative to find relatively cheaper alternative materials to bring out the desired properties within the clay soil domain. In the present era of catastrophic environmental degradation as a side effect to modernized manufacturing processes, industrialization and urbanization the creative idea would be treating the waste products in a beneficial way for reuse and recycling. Bottom ash and ecosand are construed as a waste product from cement industry. An optimal combination of bottom ash-eco sand can be thought of as a viable alternative to stabilize the clay soils by means of an effective dispersion dynamics associated with the inter connected network of pore spaces. A CATIA model was created and imported to ANSYS Fluent to study the dispersion dynamics. Ion migration from the bottom ash-ecosand pile was facilitated through natural formation of cracks in clay soil subjected to atmospheric conditions. Treated samples collected at different curing days from inner and outer zones at different depths were tested for, plasticity index, Unconfined Compressive Strength (UCS), free swell index, water content, Cation Exchange Capacity (CEC), pH and ion concentration to show the effectiveness of the method in improving the clay soil.

개발 과수용 농약방제복의 반복세탁에 따른 부위별 농약 방호성능의 변화 (Change of the Protection Efficiency in Each Part of Developed Pesticide-Proof Clothes by Repeated Washings)

  • 신정화;황경숙;이효현
    • 한국지역사회생활과학회지
    • /
    • 제22권4호
    • /
    • pp.615-621
    • /
    • 2011
  • This study was conducted to evaluate of the protection efficiency in each part of developed pesticide-proof clothes by repeated washings. We investigated the effect of repeated laundering on mechanical properties of pesticide-proof clothes (not washed vs 5 times washed). We also examined pesticide infiltration rate into the pesticide-proof clothes by repeated laundering. The patches(TCL paper, surface area 50cm2)were attached to the inside of pesticide-proof clothes(head, chest, right upper-arm, right forearm, left thigh, left calf, back) which subjects had dressed in during pesticide spraying. The patches were detached from working clothes after work. For the extraction of pesticide in pesticide-proof clothes, sonication was applied for 30 min with methanol. The gas chromatography/mass spectrometry (GC/MS) was applied to identify the pesticide component. The results of this study are as follows: The force strength, water-vapour resistance and surface wetting resistance of pesticide-proof clothes decreased 5 times more in washed clothes. The concentration of pesticide was the highest in the head area of pesticide-proof clothes. In seven parts of TLC paper attached to the pesticide proof clothes, the concentration of pesticide was higher in the left thigh. The penetration part and concentration of pesticide increased as washing was repeated. Therefore the conclusion which can be drawn from this study is this: protection efficiency of pesticide-proof clothes decrease by repeated washings.

HWE에 의한 $Cd_{1-x}Zn_xS $박막의 성장과 광전도 특성 (Growth of $Cd_{1-x}Zn_xS $ Thin films Using Hot Wall Epitaxy Method and Their Photoconductive Characteristics)

  • 홍광준;유상하
    • 한국결정학회지
    • /
    • 제9권1호
    • /
    • pp.53-63
    • /
    • 1998
  • HWE 방법에 의해 Cd1-xZnxS 박막을 (100)방향을 Si 기판 위에 성장시켰다. 증발원과 기판의 온도를 각각 600℃, 440℃로 하여 성장시킨 Cd1-xZnxS 박막의 이중 결정 X-선 요동곡선(DCRC)의 반폭치(FWHM)값이 265 arcsec로 가장 작았다. Van der Pauw 방법으로 Hall효과를 측정하여 운반자 농도와 Hall 이동도의 온도 의존성을 조사하였다. 광전도 셀의 특성으로 spectral response, 최대 허용소비전력(MAPD), 광전류와 암전류(pc/dc)의 비 및 응답시간을 측정하였다. Cd0.53Zn0.47S광전도 셀을 Cu증기 분위기에서 열처리한 경우 감도(γ)는 0.99, pc/dc은 1.65 ×10 7 그리고 최대 허용소비전력(MAPD)은 338mW, 오름시간 (rise time)은 9.7ms, 내림시간(decay time)은 9.3ms로 가장 좋은 광전도 특성을 얻었다.

  • PDF

Polyimide 기판을 이용한 CVD-Cu 박막 형성기술 (Formation of CVD-Cu Thin Films on Polyimide Substrate)

  • 조남인;임종설;설용태
    • 한국산학기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.37-42
    • /
    • 2000
  • 유기금속 화학기상증착기술에 의해 폴리이미드 기판과 질화티탄 기판 위에 구리박막을 형성하였다. 구리박막을 화학기상증착기술에 의해 형성하면 종래의 물리적증착기술에 비하여 증착속도가 빠르고 층덮힘 성질이 좋아 산업체의 제품생산 응용에서 많은 장점이 있다. 이 장점은 제품의 생산성과 신뢰성에 영향을 미친다. 기판의 온도와 구리전구체 증기압력 조건을 변화시키며 반복실험을 실시하였으며, 시편에 따라서는 전기적 성질 향상을 위하여 후속 열처리를 수행하였다. 형성된 구리박막의 미세구조는 전자현미경으로 관찰하였으며, 전기비저항은 4점 프로브를 이용하여 측정하였다. 질화티탄을 기판으로 사용한 경우 구리박막에서는 섭씨 180도의 기판온도에서 만들어진 시편에서 가장 좋은 전기적 성질이 측정되었다. 한편, 폴리이미드 기판을 사용한 경우, 기상과 액상의 혼합상태 전구체를 이용하여 250 nm/min의 매우 높은 증착속도를 얻을 수 있었다.

  • PDF

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.