• Title/Summary/Keyword: vapor-permeable water-repellent fabric

Search Result 9, Processing Time 0.017 seconds

Frictional Sounds and Its Related Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 관련 역학적 성질 비교)

  • 조길수;박미란
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.8-13
    • /
    • 2003
  • Frictional sound of 13 vapor permeable water repellent fabric by sound generator were recorded and analysed through FFT analysis. The frictional Sounds were quantified by calculating total sound pressure(LPT), the level range ΔL and the frequency difference Δf. Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of dry coating. Values for bending rigidity, shear stiffness, surface roughness and compressional recovery of polyurethane fabrics increased compared with the cire finished fabrics. Laminated fabrics had high values of frictional coefficient and low values of surface roughness. LPT showed significant correlation with compressional energy, weight and thickness. (ΔL) was highly correlated with compressional linearity, frictional coefficient, compressional recovery, and (Δf) with tensile linearity, compressional energy, thickness, and weight.

  • PDF

Basic and Mechanical Properties by Film Type to Minimize the Sound Pressure Level of PTFE Laminated Vapor-permeable Water-repellent Fabrics (PTFE(Polytetrafluoroethylene) 라미네이팅 투습발수직물의 총음압 최소화를 위한 필름 타입 별 기본 특성과 역학 특성)

  • Lee, Kyu-Lin;Lee, Jee-Hyun;Jin, Eun-Jung;Yang, Youn-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.641-647
    • /
    • 2012
  • This study investigates the sound properties of fabric frictional sound (SPL, ${\Delta}L$, ${\Delta}f$) according to the film type of PTFE laminated vapor-permeable water-repellent fabrics in order to understand the relationship between SPL and the basic properties of fabrics such as layer, yarn type, and thickness of fiber. This study accesses their mechanical properties and determines how to control them to minimize SPL. Eight PTFE laminated water-repellent fabrics, composed of four different film types (A, B, C, D) and with two different fabrics, were used as test specimens. Frictional sounds generated at 1.21m/s were recorded by using a fabric sound generator and SPLs were analyzed through Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured by KES-FB. The SPL value was lowest at 74.4dB in film type A and highest as 85.5dB in type D. Based on ANOVA and post-hoc test, specimens were classified into less Loud Group (A, B) and Loud Group (C, D). It was shown that SPL was lower when 2 layer (instead of 3 layer), filament yarn than staple, and thin fiber than thick were used. In Group I, shearing properties (G, 2HG5), geometrical roughness (SMD), compressional properties (LC, RC) and weight (W) showed high correlation with SPL however, elongation (EM) and shear stiffness (G) did with SPL in Group II.

A Study on Processes and Performance Evaluation for IR Camouflage Printed Selectively Permeable Membrane Fabrics (위장 날염된 선택 투과성 화생방 직물의 제조 공정연구 및 성능평가)

  • Jeong, Yong-Kyun;Moon, Sang-Hyun;Kang, Jae Sung;Seo, Hyeon Kwan;Park, Hyen Bae
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • The object of this research is to perform the basic research for the development of selectively permeable membrane fabrics which is suitable for korean military in sense of embattlement. As a key factor of selectively permeable membrane fabrics which is suitable for korean military, this study selected the best PVA thickness and membrane selection for DMMP protection, pre-treatment method for conformational stability of face fabric and water/oil repellent process condition. Especially as the PVA coating thickness of the fabrics increase, peneration of DMMP decrease including water vapor permeation is lower. This study shows how physical features and permeability of chemical agents can be influenced by pre-treatment methods, the selection of selectively permeable membrane, the thickness of PVA etc. Results showed that outer shell / PVA / e-PTFE materials possessed performance with superior water vapor permeation (Over $3,000g/m^2/day$) and protective capability against DMMP vapor ($0.6{\mu}g/cm^2{\cdot}16hr$).

Relationship Between Frictional Sounds and Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 역학적 성질 간의 상관성)

  • Yang, Yoon-Jung;Park, Mi-Ran;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.566-571
    • /
    • 2008
  • Frictional sounds of 8 vapor permeable water repellent fabrics by sound generator were recorded and analyzed through FFT fast Fourier transform analysis. The frictional Sounds were quantified by calculating level pressure of total sound(LPT), the level range(${\Delta}L$) and the frequency difference(${\Delta}f$). Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of other kinds of finishing. ${\Delta}L$ values of specimens laminated were highest. Absolute values of ${\Delta}f$ were high in the cire finished and laminated specimens. Values for bending rigidity, shear stiffness and energy required for the compression of coated specimens increased compared with the cire finished and laminated specimens. Laminated specimens had high values of frictional coefficient and low values of surface roughness. Relationship between frictional sounds and mechanical properties analysed by use of correlation coefficients and stepwise regression. LPT showed significant correlation with elongation, tensile energy, geometrical roughness, weight and thickness. ${\Delta}L$ was highly correlated with tensile linearity, frictional coefficient, and ${\Delta}f$ with tensile linearity, weight and thickness. LPT were revealed to be explained by elongation and weight. ${\Delta}L$were predicted by tensile linearity, and ${\Delta}f$ by tensile linearity and thickness.

Thermal and Water Transmission Properties of Vapor Permeable Water Repellent Fabrics and Thermal Insulation Batting Materials (투습발수직물과 보온단열소재의 열 및 수분전달 특성)

  • Cho Gil Soo;Choi Jong Myoung;Lee Jung Ju;Lee Sern Woo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.2
    • /
    • pp.237-244
    • /
    • 1992
  • The purpose of this study was to comparatively evaluate thermal and water transmission properties of several vapor permeable water repellent (VPWR) fabrics and synthetic battings that became available in recent years. Five VPWR fabrics evaluated were Hipora in three coating variants, $Gore-Tex^{\circledR}$ and $Aitace^{\circledR}$. Battings evaluated were $Viwarma^{\circledR}$, $Uniwarmr^{\circledR}$, $Thinsulate^{\circledR}$, and $Airseal^{\circledR}$ Thermal resistance and water vapor transmission were measured for each fabric and batting and in all combinations. Thermal resistance at zero and 37 cm/sec air velocity was determined by the Thermo Labo II technique for simultaneously measuring conduction and radiation heat transfer. Water vapor transmission over 24 hours was measured by a modified weight-gain method in a compact humid chamber at conditions simulating the clothing climate under heavy exercise ($40{\pm}1^{\circ}C$, $90{\pm}2\%$ R.H., and 0.5 m/sec air velocity). Fabric porosity was calculated from fiber density and fabric weight, thickness, and area. Thermal resistance results for the fabrics showed the effectiveness of coatings in inhibiting heat transfer. Measurements taken in wind were: $31.1\~37.6\%$ for $Hipora^{\circledR}$ variants; $31.0\%$ for $Gore-Tex^{\circledR}$; and $18.4\%$ for $Aitaca^{\circledR}$ Measurements without wind were higher but in the same order. Water vapor transmission results were in reverse order: $Aitac^{\circledR}$, $8.8 kg/m^{2};\;Gore-Tex^{\circledR}$, 6.4 kg/$m^{2}$; and $Hipora^{\circledR},\;4.4\~6.0\;kg/m^{2}$. In general thermal resistance increased with porosity. For battings, the thermal resistance with wind results were: $Viwarmu^{\circledR}$, $65.0\%;\; Thinsulate^{\circledR}$, $62.0\%$; $Uniwarm^{\circledR}$, $61.0\%$; and $Airseala^{\circledR},\;53.1\%$. Thermal resistance was proportional to thickness. Thermal resistance of fabric-batting combinations were $20\%$ higher than those of the battings only. Water vapor transmission for combinations was mainly affected by that for the VPWR fabric used.

  • PDF

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

Sensibility Evaluation of Internet Shoppers with the Sportswear Rustling Sounds (스포츠의류 마찰음 정보 제공에 따른 인터넷 구매자의 감성평가)

  • Baek, Gyeong-Rang;Jo, Gil-Su
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.177-180
    • /
    • 2009
  • This study investigates the perception of different fabrics by consumers when provided with a video clip with rustling sounds of the fabric. We utilized sportswear products that are currently on the market and evaluated the emotional response of internet shoppers by measuring the physiological and psychological responses. Three kinds of vapor-permeable water-repellent fabric were selected to generate video clips each containing the fabric rustling sound and images of exercise activities wearing the sportswear made of the respective fabric. The new experimental website contained the video clips and was compared with the original website which served as a control. 30 subjects, who had experience to buy clothing online, took part in the physiological and psychological response to the video clip. Electroen-cephalography (EEG) was used to measure the physiological response while the psychological response consisted of evaluating accurate perception of the fabric, satisfaction, and consumer interest. When we offered video clips with fabric's rustling sound on the website, subjects answered they could get more accurate and rapid information to decide to purchase the products than otherwise they do the shopping without such information. However, such rustling sounds somewhat annoy customers, as proved psychological and physiological response. Our study is a critical step in evaluating the consumer's emotional response to sportswear fabric which will promote selling frequency, reduce the return rate and aid development of new sportswear fabric further evolution of the industry.

  • PDF

Clothing Temperature Changes of Phase Change Material-Treated Warm-up in Cold and Warm Environments

  • Choi Kyeyoun;Chung Hyejin;Lee Boram;Chung Kyunghee;Cho Gilsoo;Park Mikyung;Kim Yonkyu;Watanuki Shigeki
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.343-347
    • /
    • 2005
  • The purpose of this study was to investigate the appropriate amounts of phase change materials to give objective and subjective wear sensations. Vapor-permeable water-repellent fabrics with (WR-PCM) and without (WR) octadecane containing microcapsules were obtained by wet-porous coating process. Then, calculating the area of the WR-PCM treated clothes, we estimated the total calories of the clothing by multiplying the heat of fusion and heat of crystallization of PCM to the calculated area. Wear tests were conducted in both warm environment $(30^{\circ}C,\;65\%\;RH)$ and cold environment $(5^{\circ}C,\;65\%\;RH)$ with sports warm up style experimental garments made with WR and WR-PCM fabrics. Rectal, skin, and clothing microclimate temperatures, saliva and subjective evaluation measurements were done during the wear test. There was no difference of rectal and mean skin temperatures between WR and WR-PCM, but the clothing microclimate temperature of WR-PCM under warm environment was slightly lower than that of WR. In cold environment, WR-PCM showed much higher temperature than in WR. Saliva change did not appear between clothes, but did between two environments. Although subjective sensation between WR and WR-PCM was not significantly different, WR-PCM was rated as cooler than WR in warm environment and as warmer than WR in cold environment. The results of this study indicated that octadecane containing microcapsules in water-repellent fabric provide cooling effect.

Frictional Sound Characteristics of vapor Permeable Water Repellent Fabric according to Finishing Methods at Different Frictional Speeds (투습발수 가공방법에 따른 직물의 마찰 속도별 소리 특성)

  • Han, A-Reum;Yang, Yun-Jeong;Jo, Gil-Su
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.131-134
    • /
    • 2009
  • 본 연구는 가공방법이 다른 투습발수직물의 마찰 속도별 직물마찰음의 소리특성과 주관적 평가간의 관계를 분석하는 것을 목적으로 한다. 스포츠웨어용 투습발수직물 중 가공방법이 다른 4 종(PU 건식코팅, PU습식코팅, 시레가공, 라미네이팅)의 나일론 100% 시료를 대상으로 실험하였다. 마찰속도의 상세 설정이 가능한 직물소리 시뮬레이터 v. 4.0으로 제어가 되는 직물마찰음 발생장치를 사용하여 직물마찰음을 발생시켜 녹음하였다. 직물의 마찰 속도는 동작(walking, jogging, running)시 팔과 몸통 사이의 마찰속도를 분석하여 이 속도에 따라 직물마찰음을 발생시켰고, Sound quality system으로 7 가지(SPL, ${\triangle}L$, ${\triangle}f$, Loudness(Z), Sharpness(Z), Roughness(Z). Fluctuation Strength(Z)) 소리특성을 분석하였다. 주관적 평가는 9 개의 형용사 쌍에 대해 의미미분척도로 평가되었다. 소리특성 분석 결과, 속도별 소리특성은 가공방법에 따른 차이 없이 walking 시가 가장 덜 시끄러운 소리가 발생하였고, 가공방법에 따라서는 마찰속도에 따라 약간 차이가 있지만 라미네이팅가공을 한 시료가 가장 날카로운 소리를 발생시켰다. 주관적 평가 결과, '거슬리는'과 '불쾌한'의 감성에 대해서는 walking, jogging, running의 순서로, 시레가공, 라미네이팅, PU건식코팅, PU 습식코팅의 순서로 증가하였다.

  • PDF