• 제목/요약/키워드: vapor-particle distribution

검색결과 55건 처리시간 0.027초

ISPM 및 PBMS를 이용한 BPSG 및 PSG CVD 공정 중 발생하는 오염입자의 실시간 측정 (Real-time Contaminant Particle Monitoring for Chemical Vapor Deposition of Borophosphosilicate and Phosphosilicate Glass Film by using In-situ Particle Monitor and Particle Beam Mass Spectrometer)

  • 나정길;최재붕;문지훈;임성규;박상현;이헌정;채승기;윤주영;강상우;김태성
    • 한국입자에어로졸학회지
    • /
    • 제6권3호
    • /
    • pp.139-145
    • /
    • 2010
  • In this study, we investigated the particle formation during the deposition of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG) films in thermal chemical vapor deposition reactor using in-situ particle monitor (ISPM) and particle beam mass spectrometer (PBMS) which installed in the reactor exhaust line. The particle current and number count are monitored at set-up, stabilize, deposition, purge and pumping process step in real-time. The particle number distribution at stabilize step was measured using PBMS and compared with SEM image data. The PBMS and SEM analysis data shows the 110 nm and 80 nm of mode diameter for BPSG and PSG process, respectively.

진공공간 내 나노급 오염입자의 실시간 진단시스템 개발 (Development of real-time nanoscale contaminant particle characteristics diagnosis system in vacuum condition)

  • 강상우;김태성
    • 진공이야기
    • /
    • 제2권3호
    • /
    • pp.11-15
    • /
    • 2015
  • Particle characteristics diagnosis system (PCDS) was developed to measure submicron particle characteristics by modulation of particle beam mass spectrometry (PBMS) with scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). It is possible to measure the particle size distribution in real-time, and the shape, composition can be measured in sequence keeping vacuum condition. Apparatus was calibrated by measuring the size classified NaCl particle which generated at atmospheric pressure. After the calibration, particles were sampled from the exhaust line of plasma enhanced chemical vapor deposition (PECVD) process and measured. Result confirms that PCDS is capable for analyzing particles in vacuum condition.

튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석 (Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace)

  • 배귀남;현정은;이태규;정종수
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.

In situ measurement-based partitioning behavior of perfluoroalkyl acids in the atmosphere

  • Kim, Seung-Kyu;Li, Donghao;Kannan, Kurunthachalam
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.281-289
    • /
    • 2020
  • Environmental fate of ionizable organic pollutants such as perfluoroalkyl acids (PFAAs) are of increasing interest but has not been well understood because of uncertain values for parameters related with atmospheric interphase partitioning behavior. In the present study, not only the values for air-water partition coefficient (KAW) and dissociation constant (pKa) of PFAAs were induced by adjusting to in situ measurements of air-water distribution coefficient between vapor phase and rainwater but also gas-particle partition coefficients were also estimated using three-phase partitioning model of ionizable organic pollutants, in situ measurements of PFAAs in aerosol and air vapor phase, and obtained parameter values. The pKa values of PFAAs we obtained were close to the minimum values suggested in literature except for perfluorooctane sulfonic acids, and COSMOtherm-modeled KAW values were assessed to more appropriate among suggested values. When applying parameter values we obtained, it was predicted that air particle-associated fate and transport of PFAAs could be negligible and PFAAs could distribute ubiquitously along the transection from urban to rural region by pH-dependent phase transfer in air. Our study is expected to have some implications in prediction of the environmental redistribution of other ionizable organic compounds.

화학기상응축 공정에서 TiO2나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 -Part II 분말형성에 대한 반응인자적 분석 (Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part II: Analysis of Particle Formation Estimated by Reaction Factors)

  • 이창우;유지훈;임성순;윤성희;이재성;좌용호
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.328-332
    • /
    • 2003
  • Characteristics of $TiO_2$nanoparticles controlled by precursor flow rate and reaction temperature in chemical vapor condensation process were interpreted in the view of decisive reaction factors, i.e. supersaturation ratio, concentration of vapor molecule, collision frequency and rate, and residence time, which directly affect the particle size and size distribution in CVC reactor. As results, the increases of precursor flow rate and reaction temperature induced the increase in the average sizes of $TiO_2$ nanoparticles in CVC reactor by acceleration of coagulation growth due to the increase of collision between $TiO_2$vapor molecules and particles. The effects of reaction factors on the characteristics of$TiO_2$nanoparticles were discussed with considering particle formation process in CVC reactor under given process parameters.

액상부탄 간헐분무의 액적 크기 및 속도 측정과 최적 확률분포 연구 (Measurements of Droplet Sizes and Velocities with Optimum Probability Density Function in a Transient Liquefied Butane Spray)

  • 김종현;김재욱;구자예
    • 한국분무공학회지
    • /
    • 제5권1호
    • /
    • pp.30-40
    • /
    • 2000
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturated vapor pressure of the butane(0.23MPa at 298K). The ambient pressure was held at a pressure above(0.37MPa) and below(0.15MPa) the fuel vapor pressure. The axial velocities, radial velocities, and size distributions in butane sprays were measured with PDPA(Phase Doppler Particle Analyzer) system. The PDPA measurement showed a smaller SMD at the 0.15MPa chamber pressure, compared to the 0.37MPa case. Log-hyperbolic density function for the droplets size distribution can be fitted to the experimental results of a liquefied butane spray.

  • PDF

초음속 유동에서 코로나 방전을 이용한 금속 나노 입자의 생성 (Metallic Nano Particle Generation by Supersonic Nozzle with Corona Discharge)

  • 정재희;박형호;김상수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1510-1515
    • /
    • 2004
  • The effects of additive ions on the generation of metallic nanoparticles were evaluated using a corona induced supersonic nozzle. Applying the corona discharge to the nanoparticle generator, a tungsten needle and the supersonic nozzle are used as an anode electrode and a cathode electrode respectively. The corona ions act as nuclei for the silver vapor condensation. The ion density was controlled precisely as varying the applied voltage between electrode and nozzle. The mean diameter of the silver particle decreases as the ion density increases. However, the number concentration of the silver particle tended to increase with the ion density. The size distribution is more uniform as the ion density increases.

  • PDF

기상반응(CVD)법 의한 실리카 미분말의 제조 (Preparation of Ultrafine Silica Powders by Chemical Vapor Deposition Process)

  • 최은영;이윤복;신동우;김광호
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.850-855
    • /
    • 2002
  • Silica powders were prepared from $SiCl_4$-$H_2$O system by chemical vapor deposition process, and investigated on size control of the products with reaction conditions. The products were amorphous and nearly spherical particles with 130nm~50nm in size. The size distribution became narrow with the increase of [$H_2$O]/[SiCl$_4$] concentration ratio. The particle size decreased with the increase of reaction temperature, [$H_2$O]/[SiCl$_4$] concentration ratio and total flow rate. The specific surface area measured by BET method was about three times larger than that of electron microscope method.

Synthesis and Characteristics of FePt Nanopowder by Chemical Vapor Condensation Process

  • Yu, Ji-Hun;Lee, Dong-Won;Kim, Byoung-Kee;Jang, Tae-Suk
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1196-1197
    • /
    • 2006
  • FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.

  • PDF

대기 중 다환방향족 탄화수소의 측정을 위한 시료포집방법의 비교평가 (Evaluation of Sampling Methodology for the Measurement of Polycyclic Aromatic Hydrocarbons in the Atmosphere)

  • 백성옥;최진수
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.43-62
    • /
    • 1998
  • This study was carried out to investigate the influence of different sampling methods on the measured concentrations of polycyclic aromatic hydrocarbons (PAH) both in the vapor and particulate phases, and to evaluate the effects of ambient temperature and sampling duration on the losses of PAH associated with particle samples due to volatilization. The experimental protocol of this study is consisted of two parts. The first part is related to the comparison of PAH concentrations measured by 4 different sampling systems, each of which involves different sampling principles for comparison purposes, including a medium-volume sampler with XAD-2 adsorbent, a high-volume sampler with polyurethane foam (PUF), two identical low-volume samplers: one with XAD-2 and the other with PUF, respectively. The second part of this study is to quantitatively estimate the losses of particulate PAH samples by volatilization during sampling, using two identical low-volume samplers: one was used for changing the filters every 3 hrs, 6 hrs, 12 hrs, and 24 hrs sampling, while the other was maintained for continuous 48 hours sampling without changing the filter. The concentrations of volatile PAH including 2-3 rings appeared to be significantly affected by the type of adsorbent. Measured levels of these lower-molecular weight PAH by XAD-2 adsorbent were much higher than those by PUF for both high-volume and low-volume sampling. PUF was found to give rise to unknown components that interfered with the PAH analysis, even after extensive clean-up. In addition, the retention efficiency of PUF for lower molecular weight PAH was subject to a large variation, being significantly influenced by sampling conditions such as ambient temperature. However, the effect of sampling methods with different adsorbents on the measured levels of semi-volatile compounds including 4 rings PAH such as fluoranthene, pyrene, BaA and chrysene, was not so much significant as more volatile PAH compounds. It was also clear from this study that volatilization losses of the semi-volatile PAH collected on the filters were inevitably occurred during prolonged sampling, and hence the results obtained from conventional sampling methods may not be expected to yield an accurate distribution of PAH between the vapor and particulate phases.

  • PDF