• Title/Summary/Keyword: vapor phase reaction

Search Result 115, Processing Time 0.027 seconds

Effects of Water Vapor, Molecular Oxygen and Temperature on the Photocatalytic Degradation of Gas-Phase VOCs using $TiO_2$Photocatalyst: TCE and Acetone

  • Kim, Sang-Bum;Jo, Young-Min;Cha, Wang-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.35-42
    • /
    • 2001
  • Recent development of photocatalytic degradation method that is mediated by TiO$_2$ is of interest in the treatment of volatile organic compounds(VOCs). In this study, trichloroethylene(TCE) and acetone were closely examined in a batch scale of photo-reactor as a function of water vapor, oxygen, and temperature. Water vapor inhibited the photocatalytic degradation of acetone, while there was an optimum concentration in TCE. A lower efficiency was found in nitrogen atmosphere than air, and the effect of oxygen on photocatalytic degradation of acetone was greater than on that of TCE. The optimum reaction temperature on photocatalytic degradation was about 45$^{\circ}C$ for both compounds. NO organic byproducts were detected for both compounds under the present experimental conditions. It was ascertained that the photocatalytic reaction in a batch scale of photo-reactor was very effective in removing VOCs such as TCE and acetone in the gaseous phase.

  • PDF

INFRARED ABSORPTION MEASUREMENT DURING LOW-TEMPERATURE PECVD OF SILICON-OXIDE FILMS

  • Inoue, Yasushi;Sugimura, Hiroyuki;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • In situ measurement of infrared absorption spectra has been performed during low-temperature plasma-enhanced chemical vapor depositiion of silicon-oxide films using tetramethoxysilane as a silicon source. Several absorption bands due to the reactant molecules are clearly observed before deposition. In the plasma, these bands completely disappear at any oxygen mixing ratio. This result shows that most of the tetramethoxysilane molecules are dissociated in the rf plasma, even C-H bonds. Existence of Si-H bonds in vapor phase and/or on the film surface during deposition has been found by infrared diagnostics. We observed both a decrease in Si-OH absorption and an increase in Si-O-Si after plasma off, which means the dehydration condensation reaction continues after deposition. The rate of this reaction is much slower than the deposition ratio of the films.

  • PDF

Preparation and Characterization of Fine $TiO_2$ Powders by Vapor-Phase Hydrolysis of TiCl4 (사염화티타늄의 기상가수분해반응에 의한 $TiO_2$ 미분의 제조 및 입자특성)

  • 염선민;김광호;신동원;박찬경
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.525-532
    • /
    • 1992
  • TiO2 fine powder was synthesized in the gas phase by chemical vapor deposition using hydrolysis of TiCl4. Content of rutile phase in the powder was investigated. Powder characteristics such as size, crystallinity and morphology were also studied by means of TEM, SEM and XRD. Rutile phase in TiO2 powder started to be formed from 100$0^{\circ}C$ and the content increased with the reaction temperature and TiCl4 concentration. As the temperature increased from 80$0^{\circ}C$ to 140$0^{\circ}C$, the primary particle size increased while secondary particle size decreased. Spherical secondary particle with fine primary crystals agglomerated was produced at low temperature of 80$0^{\circ}C$ whereas the grown primary particle being final particle size was produced at higher temperature of 140$0^{\circ}C$. Other effects of TiCl4 and H2O partial pressures on particle size were also reported in this study.

  • PDF

Properties of the Chemically Vapor Deposited Alumina Thin Film and Powder on Heat Treatment (CVD법으로 합성된 알루미나 박막 및 분말의 열처리에 따른 특성)

  • 최두진;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1989
  • A study on the APCVD(atmospheric pressure chemical vapor deposition) Al2O3 was done by using the aluminum-tri-isopropoxide/N2 reaction system at 40$0^{\circ}C$. When the flow rate of the carrier gas(N2) was over 2SLPM, heterogeneous reaction was observed. However, when the flow rate of the carrier gas was below 2SLPM, a porously deposited film or powder formation was observed. The film formed by a heterogeneous reaction was optically dense. The dense film is thought to be a kind of a hydrated alumina. After a thermal treatment of the film in the range of temperature from $600^{\circ}C$ to 1, 20$0^{\circ}C$, properties of the film seems to be changed due to dehydration and densification process. In the case of the powder on heat treatment(600~1, 20$0^{\circ}C$), both a phase transformation and the change of OH peak was observed.

  • PDF

Influence of Mg Vapor Pressure on the $MgB_2$/Carbon Fiber Fabricated by Physical Vapor Deposition method

  • Li, Xiang;Ha, Hong-Soo;Kim, Cheol-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.5-9
    • /
    • 2011
  • We have fabricated the superconducting $MgB_2$/carbon fiber by physical vapor deposition method. Mg (Magnesium) and B (Boron) were simultaneously deposited on the carbon fiber using the RF-sputtering and thermal evaporation, respectively. To ensure the relatively high vapor pressure of Mg at the growth region and the subsequent phase stability of $MgB_2$ at the deposition temperature, inverted funnel-like guide made of Mg-foil was employed while one side of the guide were open for the sputtered B flux. Mg vapor pressure should be controlled precisely to secure the complete reaction. The $MgB_2$/carbon fiber showed a uniformly deposited thin layer with dense and well-formed grains. The $MgB_2$/carbon fibers in this study showed $T_c$~37.5K, $J_c$ ~ $2{\times}10^4\;A/cm^2$ in the 20K, 0T.

Control of Crystal Phase and Agglomeration of Iron Oxide Nanoparticles in Gas Phase Synthesis

  • Lee, Chang-Woo;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.424-425
    • /
    • 2006
  • The effects of reaction temperature and precursor concentration on the microstructure and magnetic properties of ${\gamma}-Fe_2O_3$ nanoparticles synthesized as final products of iron acetylacetonate in chemical vapor condensation (CVC) were investigated. Pure ${\gamma}-Fe_2O_3$ phase was obtained at temperature above $900^{\circ}C$ and crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles decreased with lowering precursor concentration. Also, the coercivity decreases with decreasing crystallite size of nanopowder. The lowest coercivity was 7.8 Oe, which was obtained from the ${\gamma}-Fe_2O_3$ nanopowder sample synthesized at precursor concentration of 0.3M. Then, the crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles was 8.8 nm.

  • PDF

Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms (MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.

  • PDF

Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms (MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.1
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.