• Title/Summary/Keyword: vapor adsorption

Search Result 171, Processing Time 0.023 seconds

Adsorption of volatile organic compounds using activated carbon fiber filter in the automobiles

  • Moon, Hyung Suk;Kim, In Soo;Kang, Sin Jae;Ryu, Seung Kon
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 2014
  • The adsorption of volatile organic compounds (VOCs) was carried out using an activated carbon fiber (ACF) filter in an automobile. The adsorption capacities of formaldehyde, toluene, and benzene on an ACF filter were far better than those of a polypropylene (PP) mat filter and combined (PP+activated carbon) mat filter by batch adsorption in a gas bag. In a continuous flow of air containing toluene vapor through an ACF packed bed, the breakpoint time was very long, the length of the unused bed was short, and sharp "S" -type breakthrough curve was plotted soon after breakpoint, showing a narrow mass transfer zone of toluene on the ACF. The adsorption amount of toluene on the ACF filter was proportional to the specific surface area of the ACF; however, the development of mesopores 2-5 nm in size on the ACF was very effective with regard to the adsorption of toluene. The ACF air clarifier filter is strongly recommended to remove VOCs in newly produced automobiles.

Study of Effect of Lateral Intermolecular Interaction on Multilayer Physical Adsorption of Gas

  • Han, Sang-Hwa;Lee, Jo W.;Pak, Hyung-Suk;Chang, Sei-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.4
    • /
    • pp.117-121
    • /
    • 1980
  • The effect of lateral intermolecular interactions among the adsorbate molecules has been incorporated into the theory of multilayer physical adsorption developed previously by the present authors within the frame of Bragg-Williams approximation and the resulting adsorption isotherm has been used to interpret the adsorption data of tetramethylsilane vapor on clean iron film which we failed to account for in our previous works. The result has shown that up to the point where the relative pressure is about 0.7 considerable improvement is obtained but beyond this point there still remains large difference between theoretical and experimental isotherm. Such difference is supposed to arise from the neglect of effect of vertical interaction between the adsorbate molecules and the adsorbent surface.

Effect of Airborne Organic Vapor Concentration Levels on the Adsorption Capacity of Charcoal in the Cartridges of Air Purifying Respirators (공기 중 유기용제 농도수준이 방독마스크 정화통의 활성탄 흡착용량에 미치는 영향)

  • Park, Doo-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • The adsorption capacity of charcoal is a function of the airborne concentration of the target chemical. To evaluate the adsorption capacity of charcoal packed in the cartridges of air purifying respirators, breakthrough tests were conducted with carbon tetrachloride for three commercial cartridges (3M models #7251, #6000 and AX) at 25, 50, 100, 250 and 500 ppm. Adsorption capacities were calculated using a mass transfer balance equation derived from the curve fitting to the breakthrough curves obtained experimentally. Carbon micropore volumes were estimated by iteration to fit the Dubinin/Radushkevich (D/R) adsorption isotherm. They were 0.6566, 0.5727 and 0.3087 g/cc for #7251, #6000 and the AX cartridge, respectively. Above 100 ppm (at high challenge concentrations), #7251 and #6000 showed higher adsorption capacities. However, as the challenge concentration decreased, the adsorption capacities of #7251 and #6000 sharply dropped. On the other hand, the adsorption capacity of the AX cartridge showed little change with the decrease of the challenge concentration. Thus, the AX showed a higher adsorption capacity than #7251 and #6000 at the 5-50 ppm level. It is concluded that service-life tests of cartridges and adsorption capacity tests of charcoal should be conducted at challenge concentration levels reflecting actual working environmental conditions. Alternatively, it is recommended to use the D/R adsorption isotherm to extrapolate adsorption capacity at low concentration levels from the high concentration levels at which breakthrough tests are conducted, at a minimum of two different concentration levels.

Improving CO2/CH4 Gas Separation Capability of Pore Controlled Activated Carbon Pellets through Chemical Vapor Deposition (화학기상증착법에 의하여 기공이 제어된 활성탄소펠렛의 CO2/CH4 가스 분리능 향상)

  • Eunseon Chae;Naeun Ha;Chaehun Lim;Chung Gi Min;Seongmin Ha;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.404-409
    • /
    • 2024
  • Technologies that separate and capture CO2 from landfill gas are attracting attention as a way to reduce CO2 emitted into the atmosphere. In this study, we aimed to improve the gas separation ability of CO2/CH4 mixed gas by controlling the pores of activated carbon pellets (ACPs) through chemical vapor deposition of CH4 and also investigated the adsorption characteristics as a function of reaction time. Both the specific surface area and the micropore volume increased up to a maximum of 997.8 m2/g and 0.392 cm3/g, respectively, following the carbon deposition through CH4. In addition, the CO2 adsorption quantity increased up to a maximum of 97.4 cm3/g as the deposition time increased. As a result, the pore structure of the ACPs could be controlled via the chemical vapor deposition of CH4 and the ACPs' CO2/CH4 gas separation performance was improved. The improved CO2 adsorption capacity was ascribed to an increase in specific surface area by heat treatment and an increase in the volume of below 0.61 nm micropores due to carbon deposition.

High indium incorporation in the growth of InGaAs on (100) GaAs by precursor alternating metalorganic chemical vapor deposition (Precursor alternating metalorganic chemical vapor deposition에 의한 (100) GaAs 기판위로의 InGaAs 성장시의 높은 indium 유입)

  • 정동근
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.354-358
    • /
    • 1996
  • High indium incorporation was observed in InGaAs growth by precursor alternating metalorganic chemical vapor deposition (PAMOCVD). A possible mechanism of high indium incorporation into the crystal in PAMOCVD was proposed by considering the decomposition products of gallium and indium precursors, and thus the different adsorption behavior of the decomposed precursor molecules.

  • PDF

Biofilter Model for Robust Biofilter Design: 1. Adsorption Behavior of the Media of Biofilter (강인한 바이오필터설계를 위한 바이오필터모델: 1. 바이오필터 담체의 흡착거동)

  • Lee, Eun Ju;Seo, Kyo Seong;Jeon, Wui-Sook;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.149-154
    • /
    • 2012
  • The adsorption and desorption behavior of biofilter-medium was investigated on the performance of an adsorption column. Continuous flow-isothermal adsorption experiments were performed to treat waste air containing such a VOC as ethanol under the same condition of > 90% relative humidity as the condition of the feed to a biofilter process. In case of feeding waste air containing ethanol of 1,000 ppmv (or 2,050 mg ethanol/$m^3$) to the adsorption system at the rate of 2 L/min, the onsets of its breakthrough and reaching the state of dynamic equilibrium at the exit had been delayed 10 and 3 times, respectively, later than those at the 1st stage sampling port. Moreover, in case of 2,000 ppmv (or 4,100 mg ethanol/$m^3$), they had been delayed 9 and 3 times, respectively. Thus, regardless of feeding concentration, the ratios of delaying period were observed to be quite consistent each other at the exit of the adsorption column. With regard to the period of desorption, the ratios of delaying period were consistent each other to be 1.5 for both cases. In addition, the effect of microbial activity and sterilization-process was studied on adsorption equilibrium. The ethanol concentration in the vapor phase of vials packed with sterilized granular activated carbon (GAC) was quite consistent to that with unsterilized GAC. However, the ethanol concentrations in the vapor phase of vials packed with unsterilized compost and the unsterilized mixture of GAC and compost were higher than those with sterilized compost and the sterilized mixture of GAC and compost, respectively.

Comparison of Surface Characteristics and Adsorption Characteristics of Activated Carbons Changed by Acid and Base Modification (산과 염기의 개질에 의해 변화된 활성탄의 표면특성과 흡착특성 비교)

  • Lee, Song-Woo;Lee, Min-Gyu;Park, Sang-Bo
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.565-571
    • /
    • 2008
  • The surface properties of activated carbon modified by acids and base were studied. The influence of the surface chemistry on the adsorption of benzene and acetone vapor on modified activated carbons has been investigated The modified activated carbons were obtained by treatment with acetic acid ($CH_3COOH$), nitric acid ($HNO_3$) and sodium hydroxide (NaOH). The modified activated carbons had similar porosity but different surface chemistry and adsorption characteristics. The total surface acidity (sum of functional groups) of activated carbon (AC-AN) treated by nitric acid was 2.6 times larger than that of activated carbon (AC) before the acid treatment. Especially, carboxyl group was much developed by nitric acid treatment. The benzene equilibrium adsorption capacity of AC-AN decreased 20% more than that of AC. However, the acetone equilibrium adsorption capacity of AC-AN increased 20% more than that of AC because of the large increase of carboxyl group and acidity.

Study on Accuracy and Validity Tests for Various Prediction Models for Gas and Vapor Respirator Cartridge Service Lives (가스 및 유기용제용 호흡보호구의 정화통에 대한 수명예측방법의 정확도 및 타당성 검증연구)

  • Park, Doo Yong;Park, Ji Young;Yoon, Chung Sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.19-31
    • /
    • 1999
  • Most breakthrough tests are conducted at higher concentration levels compared to those in the field of air-purifying respirator applications. For example, typical challenge concentrations for breakthrough tests agains tcarbon tetrachloride are ranged between 250-1000 ppm although applicable concentrations range for air-purifying cartridge is 5-50 ppm for carbon tetrachloride. However, no guarantee has been made that isotherms derived from the experiment at high challenge concentrations could estimate adsorption capacity at the lower concentration range where workers wear usually air-purifying respirators. Three models of adsorption isotherms (Freundlich, Langmuir and Dubinin/Radushkevich(D/R) isotherms) that have been commonly applied for respirator cartridge testing were evaluated. Adsorption capacity at each challenge concentration was calculated from the Reaction Kinetic equation fitted for the breakthrough data. These data were used for derivation of three isotherms. In general, the D/R isotherm has given the best agreement between estimated adsorption capacities and experimentally measured. If the challenge concentration of 100 ppm is included for derivation of models, Freundlich and D/R models could succes sfully produced good estimations for adsorption capacities at 50 ppm level. Estimated adsorption capacities by both models ranged in 94 - 109 % of the experimentally measured. However, Langmuir model gives underes timation in all cases.

  • PDF