• Title/Summary/Keyword: vane-type pump

Search Result 33, Processing Time 0.018 seconds

Phase Resonance in Centrifugal Fluid Machinery -A Comparison between Pump Mode and Turbine Mode Operations and a Discussion of Mechanisms of Flow Rate Fluctuation through a Stator-

  • Yonezawa, Koichi;Toyahara, Shingo;Motoki, Shingo;Tanaka, Hiroshi;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.42-53
    • /
    • 2014
  • Phase resonance in Francis type hydraulic turbine is studied. The phase resonance is a phenomenon that the pressure fluctuation in the penstock of hydraulic turbine installation can become very large when the pressure waves from each guide vane caused by the interaction with the runner vane reach the penstock with the same phase. Experimental and numerical studies have been carried out using a centrifugal fan. In the present study, comparisons between the pump mode and the turbine mode operations are made. The experimental and numerical results show that the rotational direction of the rotor does not affect characteristics of the pressure fluctuation but the propagation direction of the rotorstator interaction mode plays an important role. Flow rate fluctuations through the stator are examined numerically. It has been found that the blade passing flow rate fluctuation component can be evaluated by the difference of the fluctuating pressure at the inlet and the outlet of the stator. The amplitude of the blade passage component of the pressure fluctuation is greater at the stator inlet than the one at the stator outlet. The rotor-stator interaction mode component is almost identical at the inlet and the outlet of the stator. It was demonstrated that the pressure fluctuation in the volute and connecting pipe normalized by the flow rate fluctuation becomes the same for pump and turbine mode operations, and depends on the rotational direction on the interaction mode.

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

A Study on Performance of Initial Blowoff Flow for a Fuel Pump with Various Temperature and Composition Condition in LPG Engine (자동차용 LPG 펌프의 온도 및 연료조성에 따른 초기토출성능에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • The In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. In this study, experiments are performed to get initial performance and efficiency of the fuel pump under different condition of the temperature and composition of fuel. The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

  • PDF