• Title/Summary/Keyword: vanadate contraction

Search Result 6, Processing Time 0.02 seconds

The Involvement of Protein Kinase C and Tyrosine Kinase in Vanadate-induced Contraction

  • Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.315-319
    • /
    • 1998
  • Gastric smooth muscle of cats was used to investigate the involvement of protein kinase in vanadate-induced contraction. Vanadate caused a contraction of cat gastric smooth muscle in a dose-dependent manner. Vanadate-induced contraction was totally inhibited by 2 mM EGTA and 1.5 mM $LACI_3$ and significantly inhibited by $10\mu$M verapamil and $1\mu$M nifedipine, suggesting that vanadate-induced contraction is dependent on the extracellular $Ca^{2+}$ concentration, and the influx of extracellular $Ca^{2+}$ was mediated through voltage-dependent $Ca^{2+}$ channel. Both protein kinase C inhibitor and tyrosine kinase inhibitor significantly inhibited the vanadate-induced contraction and the combined inhibitory effect of two protein kinase inhibitors was greater than that of each one. But calmodulin antagonists did not have any influence on the vanadate-induced contraction. On the other hand, both forskolin ($1\mu$M) and sodium nitroprusside ($1\mu$M) significantly inhibited vanadate-induced contraction. Therefore, these results suggest that both protein kinase C and tyrosino kinase are involved in the vanadate-induced contraction which required the influx of extracellular $Ca^{2+}$ in cat gastric smooth muscle, and that the contractile mechanism of vanadate may be different from that of agonist binding to its specific receptor.

  • PDF

Effect of Vanadate and Ouabain on the Contractile Response of Cat Ileal Muscle (고양이 회장 평활근의 수축력에 미치는 Vanadate와 Ouabain의 작용)

  • Lee, Jae-Yang;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.139-150
    • /
    • 1984
  • Vanadate is a potent inhibitor of Na-K-ATPase. Ouabain, the another specific inhibitor of Na-K-ATPase, induces the contraction in cardiac muscle and smooth muscle. But, some investigators observed the discrepancies between vanadate and ouabain-induced contraction in cardiac muscle. The difference of vanadate and ouabain-induced contraction was investigated in the cat ileal smooth muscle. The following results were obtained. 1) Ouabain-induced contraction was biphasic, but vanadate-induced contraction had one peak. 2) Atropine inhibited ouabain·induced contraction, but did not inhibit vanadate-induced contraction. 3) Changes in external $Ca^{++}$concentration or $Ca^{++}$ antagonists had a greater influence on the contraction induced hy vanadate than by ouabain. 4) Removal of $Na^+$ from incubation medium and high $K^+$ abolished ouabain-induced contraction, but had no effect on vanadate-induced contraction. 5) Vanadate-induced contraction was potentiated in the presence of ouabain. 6) After 3 hrs incubation with vanadate, there was no change in intracellular $Na^+$ concentrations in contrast with ouabain. These results suggest that vanadate contracts ileal smooth muscle through the mechanism different from ouabain, and this is independent of the inhibition of Na-K-ATPase activity.

  • PDF

Effects of External $Ca^{2+}$ ana the Inhibition of Na-pump on the Vanadate-induced Contraction in the Isolated Human and Rat Uterine Smooth Muscle (사람 및 흰쥐의 자궁근에서 Vanadate에 의한 수축에 미치는 외부 Calcium 및 Na-pump억제의 영향)

  • Jung, Jin-Sub;Han, Bok-Ki;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.125-137
    • /
    • 1984
  • The effects of external $Ca^{2+}$ ana the inhibition of Na-pump on vanadate-induced contraction in isolated human and rat uterine smooth muscle were studied and the following results were observed. 1) Vanadate induced contraction in rat uterine muscle and showed maximal contraction at concentration of $5{\times}10^{-4}$M, and the contractile response to vanadate was more sensitive in human than rat uterine muscle. 2) Vanadate-induced contraction was not completely inhibited by $Ca^{2+}$ removal from PSS and the response to $Ca^{2+}$ removal was more sensitive in human than rat uterine muscle. 3) Vanadate-induced contraction decreased with increasing concentration of verapamil, but even in the presence of $3{\times}10^{-5}M$ verapamil which inhibited 100 K-induced contraction completely. about 40% of maximal contraction remained, and its amplitude was similar to that of contraction in $Ca^{2+}$-free solution. 4) Vanadate-induced contraction was increased by the inhibition of Na-pump and this increase also could be observed in the presence of $3{\times}10^{-5}M$ verapamil. 5) After pretreatment with $Ca^{2+}$-free PSS containing ouabain Vanadate-induced contraction was not increased, but the contractile response of these tissues to the addition of external $Ca^{2+}$ was remarkably increased in the presence of vanadate. 6) $3{\times}10^{-5}$M verapamil inhibited vanadate-induced $Ca^{45}$ influx completely, but after pretreatment with ouabain vanadate could induce remarkable $Ca^{45}$ influx even in the presence of verapmil. 7) With increasing the time of pretreatment with ouabain or $K^+$-free solution, the degree of increase in contraction by vanadate was more remarkable. 8) $10^{-4}M$ papaverine stowed a considerable inhibition of the increase in the vanadate-induced contraction by pretreatment with ouabain. 9) Acetylcholine-induced contraction increased with lengthening the duration of Na-pump inhibition even in the presence of verapamil. Considering above results it seems that the uterine muscle of human is more sensitive to vanadate than that of rat, and both internal and external $Ca^{2+}$ is utilized in vanadate·induced contraction. In the case of Na-pump inhibition several smooth muscle contracting agents seems to induce $Ca^{2+}$ influx which is not inhibited by verapamil. This $Ca^{2+}$ influx seems to be inhibited by papaverine and to be associated with membrane potential, although its precise characteristics is not certain.

  • PDF

Effects of Vanadate on the intracellular Calcium ion activities in mvocardial cells (심근세포내 칼슘 이온 활용도에 미치는 Vanadate 의 효과)

  • Lee, Jeong-Ryeol;Kim, U-Gyeom
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.291-298
    • /
    • 1988
  • The effect of Vanadate on the isometric contraction, membrane potential and intracellular calcium ion activities of rabbit myocardial cells were investigated, using calcium selective microelectrode, filled with neutral calcium ion carrier, ETH-1001. The resting tension, the membrane potential and the intracellular calcium ion activities were recorded in normal Tyrode solution and compared with those in the contracture induced by 10 mM Vanadate. The following results were obtained: 1. The dose-response relationship between the contraction of Vanadate and twitch tension showed near-maximum response in 5mM with no corresponding changes in action potential. 2. The resting tension increased up to the amplitude of a control twitch in 10mM Vanadate with resting membrane potential, hyperpolarized. 3. Increase in intracellular calcium ion activities proceeded the contracture by 10mM Vanadate which were restored to the control level in accordance with a decrease of intracellular calcium ion activities. 4. The amplitude of contractures by 10mM Vanadate were 90-120% of the control twitch tension in which the intracellular calcium ion activities were increased about 70 times from p Ca, 7.1 in the control to p Ca, 5.8 in contractures.

  • PDF

Effects of Ouabain and Vanadate on the Spontaneous Contractions and Electrical Activity in Guinea-pig Taenia Coli (결장뉴 전기활동도에 대한 Ouabain과 Vanadate의 작용)

  • Park, Jong-Kyou;Kim, Ki-Whan;So, In-Suk
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.189-206
    • /
    • 1988
  • The effects of ouabain on the contractile and electrical activities were investigated in the isolated preparations of guinea-pig taenia coli, and compared with those of vanadate. Spontaneous contractions were recorded with force transducer, and electrical activites were measured by use of suction electrode, or single sucrose-gap technique. The contractions were induced by the electrical stimulation for 5 seconds every 1 minute with alternating current (60 Hz, 3.0 V/cm) through the platinum electrodes located in parallel with the long axis of the preparation. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%{\;}O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) Responses of spontaneous contractions to ouabain were concentration-dependent; $10^{-7}M$ ouabain caused a rise of basal tone. Above the concentration of $10^{-6}M$ ouabain, an initial increase followed by a decrease in tension was observed. 2) A continuous spike discharge was induced by the administration of $10^{-7}M$ ouabain. Above $10^{-6}M$ ouabain, a transient initial increase followed by a decrease in spike frequency and amplitude was produced, and finally membrane potential was sustained at a certain level without a spike discharge. 3) The characteristic response to $10^{-7}M$ ouabain was not blocked by the pretreatment with $10^{-7}M$ atropine. 4) The electrically induced contractions were completely suppressed at the concentration of $2{\times}10^{-7}M$ ouabain. These contractions were blocked more rapidly in paralled with the increase in ouabain concentration. 5) Effects of vanadate on the spontaneous activities were quite different from those of ouabain; $10^{-6}M$ vanadate increased the amplitude of contractions and $10^{-5}M$ vanadate increased slightly both amplitude and frequency of spontaneous contractions. $10^{-4}M$ vanadate showed irregular phasic contractions superimposed on the increased basal tone. 6) $10^{-5}M$ vanadate depolarized the membrane potential and shortened the interval between the bursts of spike discharge, whereas $10^{-4}M$ vanadate induced continuous spike discharge with membrane depolarization. 7) Vanadate caused a characteristic inhibitory response to the contractions induced by electrical stimulation; An initial rapid inhibition of tension development and then gradual recovery to a certain level. From the above results, the following conclusions could be made: 1) The rise of basal tone at $10^{-7}M$ ouabain is due to continuous spike discharge without a silent period. The continuous spike discharge is likely to be associated with a slight membrane depolarization caused by the blockage of Na pump. 2) The biphasic response induced by above $10^{-6}M$ ouabain seems to occur by the different mechanisms. The initial increase in tension is associated with depolarization along with an increase in spike frquency, whereas the subsequent relaxation occurs through a non-electrical mechanism. 3) The characteristic response to $10^{-7}M$ ouabain is resulted not from the action on intrinsic nerve terminal, but from its direct action on the membrane of smooth muscle cells. 4) The phasic contractions superimposed on the increased basal tone at the concentration of $10^{-4}M$ vanadate is resulted from the continuous spike discharge with membrane depolarization, of which mechanism remains unknown. 5) The inhibitory action of ouabain on the electrically induced contractions suggests that the increasein intracellular Na in some way inhibits the electrically induced $Ca^{2+}$ influx. The mechanism of vanadate action on the induced contractions remains unknown.

  • PDF

A Study on the Middle Step of Rabbit Skeletal Muscle Membrane Contraction by Analog Effects (아날로그에 효과에 의한 토끼 근육 막 수축의 중간단계 연구)

  • Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.61-66
    • /
    • 2007
  • X-ray diffraction studies have been made to investigate the effects of binding of ADP, ADP+Vi, ADP+AIF4, $ADP+BeF_3$ on the structure of glycerinated rabbit skeletal muscle in the rigor state. Although these phosphate analogs are known to bind actively cycling myosin heads, it is not clear whether they can bind to the attached heads in the rigor muscle. We have found that these analogs can bind to the myosin heads attached to actin filaments in the rigor state. The present results indicate that (1) bound myosin heads altered their conformation in the proximal end toward the plane perpendicular to the fiber axis when MgADP bound to them, and (2) myosin heads were dissociated substantially (up to 50%) from actin filaments but still remained in the vicinity of actin filaments when MgADP and metallofluorides (AIF4 and BeF3) or vanadate bound to them. We detected new conformations of myosin heads attached to actin filaments when they had MgADP or ADP.Pi analogs. We report here these findings on the effects of MgADP and MgADP+phosphate analogs to the rigor crossbridges.