• 제목/요약/키워드: van der Waals contacts

검색결과 15건 처리시간 0.027초

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

거친 표면간의 미세 접촉에서의 표면력 해석 (Analysis of Surface Forces in Micro Contacts between Rough Surfaces)

  • 김두인;안효석;최동훈
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

나노스케일 표면돌기 간의 미세접촉에 대한 해석 (Analysis of Nano-contact Between Nano-asperities Using Atomic Force Microscopy)

  • 안효석;장동영
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.369-374
    • /
    • 2009
  • In micro/nano-scale contacts in MEMS and NEMS, capillary and van der Waals forces generated around contacting micro-asperities significantly influence the performance of concerning device as they are closely related to adhesion and stiction of interacting surfaces. In this regard, it is of prime importance to accurately estimate the magnitude of surface forces so that an optimal solution for reducing friction and adhesion of micro/nano-surfaces may be obtained We introduced an effective method to calculate these surface forces based on topography information obtained from an atomic force microscope. This method was used to calculate surface forces generated in the contact interface formed between diamond-like carbon coating and $Si_3N_4$ ball. This method is shown to effectively demonstrate the influence of capillary force in the contact area, especially in humid atmosphere.

  • PDF

1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 염산염의 결정구조 (Crystal Structure of 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt))

  • 김문집;신준철
    • 한국결정학회지
    • /
    • 제6권2호
    • /
    • pp.103-110
    • /
    • 1995
  • 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt)의 분자 및 결정 구조를 X-선 회절법으로 연구하였다. 이 결정의 분자식은 C20H21N3O4FCl(이하 CDD), 결정계는 단사정계이고 공간군은 C2/c이다. 단위포상수 a=28.349(2)Å, b=11.941(2)Å, c=12.806(2)Å이며 β=96.428(9)°, V=4307.8Å3, T=296(2)K, Z=8이다. 구조해석에 사용한 X-선은 CuKα선(λ=1.5418Å)을 사용하였다. 분자구조는 직접법으로 풀었으며, 최소자승법으로 정밀화하였다. 최종 신뢰도 R값은 F0>4σ(F0)인 2258개의 독립 회절데이타에 대해 R=4.96%이었다. 이 분자는 내부수소결합 O(28)-H(28)…O(25) [2.517(4)Å, 156.7(447)°]를 가지고 있으며, 분자간의 결합은 van der Waals 힘으로 결합되어 있다.

  • PDF

Salicylaldehyde-4-morpholinothiosemicarbazone의 결정 및 분자구조 (The Crystal and Molecular Structure of Salicylaldehyde-4-morpholinothiosemicarbazone)

  • 구정회;김훈섭;안중태
    • 대한화학회지
    • /
    • 제21권1호
    • /
    • pp.3-15
    • /
    • 1977
  • Salicylaldehyde-4-morpholinothiosemicarbazone, $C_{12}H_{15}O_2N_3S$, 결정은 직각비등축정계에 속하며 공간군은 $Pna2_1$이다. 단위세포에는 4개의 분자가 포함되면 세포 길이는 a = 11.85(5), b = 15.45(5), c = 7.18(3)${\AA}$이다. 농도는 multiple-film equi-inclination Weissenberg 사진으로부터 3차원적 농도 데이타를 얻어 목측법에 의하여 측정하였다. 결정구조는 Patterson 및 Fourier법으로 해명하였으며 구조의 정밀화는 block-diagonal 최소자승법으로 하였으며 R값은 1064개의 반사에 대하여 0.11이었다. 몰포린 고리는 의자형이며 1분자내의 몰포린 고리와 황원자를 제외한 원자들은 대략 한 평면을 이룬다. 수산화기의 산소원자는 질소원자와 2.67${\AA}$의 거리로 $O-H{\cdot}{\cdot}{\cdot}N$형 수소결합을 하고 있고 분자간에는 van der Waals 접촉으로 연결되어 있다.

  • PDF

The Crystal Structure of Licarin-B $(C_{20}H_{20}O_4)$, A Component of the Seeds of Myristica fragrans

  • Kim, Yang-Bae;Park, Il-Yeong;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 1991
  • The crystal structure of licarin-B, a component of Myristicae Semen was determined by single crystal X-ray diffraction analysis. Crystal of the compound, which was recrystallized from the mixture of hexane and ether, is monoclinic with a=12.740(1), b=7.219(1), c=9.284(1) ${\AA}$, ${\beta}=94.75(1)^{\circ}$, $D_x=1.26$, $D_m=1.27\;g/cm^3$, space group P21, and Z=2. The structure was solved by direct method and refined by least-squares procedure to the final R value of 0.040 for 1532 independent reflections ${F{\ge}3{\sigma}(F)}$. The compound is a dimeric phenylpropanoid, and belongs to the neolignan analogues. The molecules are arranged along with the screw axis. The intermolecular contacts appear to be the normal van der Waals' forces.

  • PDF

Understanding β-Hairpin Formation: Computational Studies for Three Different Hairpins

  • Lee, Jin-Hyuk;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.741-748
    • /
    • 2008
  • We have studied the folding mechanism of $\beta$ -hairpins in the proteins 1GB1, 3AIT and 1A2P by conducting unfolding simulations at moderately high temperatures. The analysis of trajectories obtained from molecular dynamics simulations in explicit aqueous solution suggests that the positions of the hydrophobic core residues lead to subtle differences in the details of folding dynamics. However, the folding of three different hairpins can be explained by a unified mechanism that is a blend of the hydrogen-bond-centric and the hydrophobiccentric models. The initial stage of $\beta$-hairpin folding involves various partially folded intermediate structures which are stabilized by both the van der Waals interactions of hydrophobic core residues and the electrostatic interactions of non-native hydrogen bonds. The native structure is obtained by forming native contacts in the final tune-up process. Depending on the relative positions of the hydrophobic residues, the actual mechanism of hairpi n folding may or may not exhibit well-defined intermediates.

The Crystal Structure of Cinmetacin ($C_{21}H_{19}NO_4$), A Non-steroidal Antiinflammatory Agent

  • Kim, Yang-Bae;Park, Il-Yeong;Park, Yang-Hwan
    • Archives of Pharmacal Research
    • /
    • 제12권1호
    • /
    • pp.52-57
    • /
    • 1989
  • The structure of cinmetacin was determined by single crystal X-ray diffraction analysis. The compound was recrystallized from a mixture of acetone and water in orthorhombic, space group $P2_12_12_1$, with Z=4, a=35.681(8), b=9.482(2), c:5.071(1) ${\AA}$, $D_x=1.352 g/cm^3$, and $D_m=1.35g/cm^3$. The structure was solved by direct method and refined by least-squares procedure to the final R value of 0.036 for 1441 observed reflections ($F{\geq}3{\sigma}(F)$). The carboxyl group of the molecule is nearly perpendicular to the indole ring. The dihedral angle between indole ring and phenyl group is $64.5^{\circ}$. The molecules are linked together via O(1)-H ----O(3) hydrogen bonds, and arranged along 2-fold screw axis in the crystal. The intermolecular contacts are the normal van der Waals' forces.

  • PDF

Effects of metal contacts and doping for high-performance field-effect transistor based on tungsten diselenide (WSe2)

  • Jo, Seo-Hyeon;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.294.1-294.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with two-dimensional layered structure, such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are considered attractive materials for future semiconductor devices due to its relatively superior electrical, optical, and mechanical properties. Their excellent scalability down to a monolayer based on the van der Waals layered structure without surface dangling bonds makes semiconductor devices based on TMD free from short channel effect. In comparison to the widely studied transistor based on MoS2, researchs focusing on WSe2 transistor are still limited. WSe2 is more resistant to oxidation in humid ambient condition and relatively air-stable than sulphides such as MoS2. These properties of WSe2 provide potential to fabricate high-performance filed-effect transistor if outstanding electronic characteristics can be achieved by suitable metal contacts and doping phenomenon. Here, we demonstrate the effect of two different metal contacts (titanium and platinum) in field-effect transistor based on WSe2, which regulate electronic characteristics of device by controlling the effective barreier height of the metal-semiconductor junction. Electronic properties of WSe2 transistor were systematically investigated through monitoring of threshold voltage shift, carrier concentration difference, on-current ratio, and field-effect mobility ratio with two different metal contacts. Additionally, performance of transistor based on WSe2 is further enhanced through reliable and controllable n-type doping method of WSe2 by triphenylphosphine (PPh3), which activates the doping phenomenon by thermal annealing process and adjust the doping level by controlling the doping concentration of PPh3. The doping level is controlled in the non-degenerate regime, where performance parameters of PPh3 doped WSe2 transistor can be optimized.

  • PDF