• Title/Summary/Keyword: van Leer′s FVS 기법

Search Result 2, Processing Time 0.015 seconds

Robust and Efficient LU-SGS Scheme on Unstructured Meshes: Part Ⅱ - Efficient Implementation (비정렬 격자계에서 강건하고 효율적인 LU-SGS 기법 개발: Part Ⅱ- 효율적인 적용)

  • Kim Joo Sung;Kwon Oh Joon
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.39-48
    • /
    • 2004
  • In the present study, an efficient implementation technique of the van Leer's implicit operator is suggested in accordance with the Roe's explicit operator. By using an efficient treatment of the off-diagonal terms, which occupy most of the memory requirement for the linear system of equations, it is shown that the improved scheme only requires less than 30% of memory and is approximately 10-20% faster than the baseline scheme.

Improvement on Block LU-SGS Scheme for Unstructured Mesh (비정렬 격자계에서 Block LU-SGS 기법의 개선에 관한 연구)

  • Kim Joo Sung;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.38-44
    • /
    • 2001
  • An efficient Gauss-Seidel time integration scheme is developed for solving the Euler and Navier-Stokes equations on unstructured meshes. Roe's FDS is used for the explicit residual computations and van Leer's FVS for evaluating implicit flux Jacobian. To reduce the memory requirement to a minimum level, off-diagonal flux Jacobian contributions are repeatedly calculated during the Gauss-Seidel sub-iteration process. Computational results based on the present scheme show that approximately $15\%$ of CPU time reduction is achieved while maintaining the memory requirement level to $50-60\%$ of the original Gauss-Seidel scheme.

  • PDF