• Title/Summary/Keyword: value circulation

Search Result 326, Processing Time 0.035 seconds

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Natural Circulation Flow Investigation in a Rectangular Channel (사각 단면 채널에서의 자연순환 유동에 관한 연구)

  • Ha, Kwang-Soon;Kim, Jae-Cheol;Park, Rae-Joon;Kim, Sang-Baik;Hong, Seong-Wan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3086-3091
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled-down as the half height and 1/238 rectangular channel area of the APR1400 reactor vessel. As the water inlet area increased, the natural circulation mass flow rate asymptotically increased, that is, it converged at a specific value. And the circulation mass flow rate also increased as the outlet area, injected air flow rate, and outlet height increased. But the circulation mass flow rate was not changed along with the external water level variation if the water level was higher than the outlet height.

  • PDF

A Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactorA Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactor (혐기성 유동층 생물막 반응기에서 순환유속 증가에 따른 층공극률 및 유기성 폐수 처리특성에 관한 연구)

  • 김재우;안재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.1.1-15
    • /
    • 1995
  • This study was performed to estimate the characteristics of the organic wastewater treatment and bed porosity with the circulation velocity in the anaerobic fluidized bed biofilm reactor. The results were as follows; 1. With Increasing circulation velocity the fluidized bed expanded smooth and with increasing initial particle volume the fluidized bed was increased. 2. With increasing circulation velocity the gasproduction was increased, but at 1.Scnt/sec of circulation velocity AFBBR showed the highest value of methane production rate per removed COD. Therefore, for the purpose of economical operation in AFBBR, 1.5cm/sec of circulation velocity was optimum 3. The microorganisms were colonized in the crevice of the media. 4. On fluidization, COD, VA,55 profiles with the reactor height were not showed. In conclusion, AFBBR suit the organic wastewater treatment's purpose, and at 1.5cm/sec of circulation velocity the system is economical in an energy Point of view.

  • PDF

Activation of Fibrinolytic System during Open Heart Surgery (개심술중 섬유소융해계의 활성화에 관한 연구)

  • Park, Lee-Tae;Seo, Gyeong-Pil;Lee, Jeong-Sang
    • Journal of Chest Surgery
    • /
    • v.22 no.4
    • /
    • pp.525-547
    • /
    • 1989
  • Hemorrhagic tendency observed in open heart surgery patients has been attributed, among other causes, to increased fibrinolytic activity during extracorporeal circulation. But the exact mechanism of enhanced fibrinolytic activity which occurs during extracorporeal circulation is still unknown. So, we studied and compared the changes of parameters of fibrinolytic and protein C system according to time obtained from the plasma of 31 adult open heart surgery patients[EGG group] and 10 adult general thoracic surgery patients[control group], in order to confirm the hypothesis that the activated protein C system might affect the fibrinolytic system during extracorporeal circulation. In ECC group, the nature of the enhanced fibrinolytic activity that evolved during extracorporeal circulation was characterized by significant increase in fibrin degradation products[P < 0.01] and significant decrease in plasminogen and alpha2-antiplasmin[P < 0.05, P < 0.01] in spite of adequate amount of heparin administration. These changes were most pronounced in the early phase of extracorporeal circulation and normalized after termination of extracorporeal circulation. The results of these observations were the same after volume correction with the value of hematocrit. The change of volume corrected protein C ratio during extracorporeal circulation revealed similar pattern to those of plasminogen and alpha2-antiplasmin [P < 0.01], but volume corrected ratio of free protein S showed significant increase after the commencement of extracorporeal circulation then decreased after extracorporeal circulation. Although the above mentioned changes occur similarly in both bubble type oxygenator-used and membrane oxygenator-used patients groups, but the degree of decrease was more severe in membrane oxygenator-used patients group [P < 0.01] and showed much slower recovery to reach to the preextracorporeal circulation level. These results confirm the hypothesis that the enhanced fibrinolysis during extracorporeal circulation might be caused by the activation of protein C system and the activation is possibly linked to the appearance of thrombin from contact activation of blood after wide exposure to the synthetic surfaces of extracorporeal circuit. Key words: Extracorporeal circulation, Enhanced fibrinolysis, Protein C system.

  • PDF

Solid Circulation Rate in a 3-phase (gas/liquid/solid) Viscous Circulating Fluidized Bed

  • Jang, Hyung Ryun;Yoon, Hyuen Min;Yang, Si Woo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.186-190
    • /
    • 2018
  • For the first time, the characteristics of solid circulation rate ($G_S$) were investigated in a three-phase (gas-liquid-solid) viscous circulating fluidized bed (TPCFB). The solid circulation rate was controlled separately by adjusting the experimental apparatus as well as operating variables. Effects of primary and secondary liquid velocities ($U_{L1}$ and $U_{L2}$), gas velocity ($U_G$), particle size ($d_p$), height of particles piled up in the solid recycle device (h), and viscosity of continuous liquid media (${\mu}_L$) on the value of $G_S$ were determined. The experimental results showed that the value of $G_S$ increased with increases in the values of $U_{L1}$, $U_{L2}$, h and ${\mu}_L$, while it decreased with increasing $U_G$ and $d_p$ in TPCFBs with viscous liquid media. The values of $G_S$ were well correlated in terms of dimensionless groups within this experimental conditions.

One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow (공기와 물의 이상 자연순환 유동의 1 차원 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Jae-Cheol;Hong, Seong-Wan;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

Assessment of Future Water Circulation Rate in Dodang Watershed under Climate Change (기후변화에 따른 도당천 유역 미래 물순환율 평가)

  • Kwak, Jihye;Hwang, Soonho;Jun, Sang Min;Kim, Seokhyeon;Choi, Soon Kun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.99-110
    • /
    • 2020
  • The objective of this study is to analyze the trend of changes in the water circulation rates under climate change by adopting the concept of WCR defined by the Ministry of Environment. With the need for sound water circulation recovery, the MOE proposed the idea of WCR as (1-direct flow/precipitation). The guideline for calculating WCR suggests the SCS method, which is only suitable for short term rainfall events. However, climate change, which affects WCR significantly, is a global phenomenon and happens gradually over a long period. Therefore, long-term trends in WCRs should also be considered when analyzing changes in WCR due to climate change. RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios were used to simulate future runoff. SWAT (Soil and Water Assessment Tool) was run under the future daily data from GCMs (General Circulation Models) after the calibration. In 2085s, monthly WCR decreased by 4.2-9.9% and 3.3-8.7% in April and October. However, the WCR in the winter increased as the precipitation during the winter decreased compared to the baseline. In the aspect of yearly WCR, the value showed a decrease in most GCMs in the mid-long future. In particular, in the case of the RCP 8.5 scenario, the WCR reduced 2-3 times rapidly than the RCP 4.5 scenario. The WCR of 2055s did not significantly differ from the 2025s, but the value declined by 0.6-2.8% at 2085s.

Numerical analysis of the blood flow in coronary artery combining CFD method with the vascular system modeling (혈관계 시스템 모델과 CFD의 결합을 통한 관상동맥 내 혈류의 수치적 해석)

  • Shim Eun Bo;Park Myung Soo;Ko Hyung Jong;Kim Kyung Moon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.152-157
    • /
    • 1999
  • For the simulation of the blood flow in coronary artery, the system modeling of coronary hemodynamics is combined with CFD technique. The blood flow in coronary artery interacts with the global coronary circulation. Especially in case of the coronary artery with stenosis, the interaction plays an important role in the hemodynamics of the circulation. In this study we present a combined numerical approach using both the CFD technique for flow simulation and the global system model of coronary circulation. We use a lumped parameter model for the global simulation of coronary circulation whereas the finite element method is employed to compute the viscous flow field in stenosed coronary artery, The time variation of the pressure drop due to stenosis is obtained from the proposed numerical method. Numerical results shows that the flow resistance and pressure drop due to stenosis has a relatively large value in systole.

  • PDF

Vertical Distribution of Phytoplankton in the Paldang Dam Reservior (팔당댐 담수수역 식물플랑크톤의 수직분포)

  • Lee, Kyung
    • Journal of Plant Biology
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 1986
  • Phytoplankton community was investigated at the Paldang Dam Reservoir in the Mid-Han River by it's depth, in spring and summer known as the period of phytoplankton's blooming. It was only in summer that phytoplankton bloomed at the investigated area. 128 kinds of phytoplankton were identified and of them, diatoms were abundunt in spring but cyanophyta and chlorophyta were in summer. Because some species with high pollution index were observed in summer, it could be proved that the investigated area was polluted especially in summer. In spring shown the circulation period by vertical distribution pattern of chlorophyll-a and isothermal distribution pattern of water temperature, maximum value of phytoplankton standing crops appeared at the upper layer, except for surface layer. In summer shown the circulation period after the stagnation period by vertical distribution pattern of chlorophyll-a and immediate destruction after stratification of water temperature, maximum value of phytoplankton standing crops appeared at the lower layer. the layer at which the maximum value of chlorophyll-a appeared also accorded with that of phytoplankton standing crops. So, it could be approved that there existed a close relationship among phytoplankton standing crops, chlorophyll-a, and water temperature.

  • PDF

A Numerical Experiments on the Atmospheric Circulation over a Complex Terrain around Coastal Area. Part II : (연안부근 복잡지형의 대기유동장 수치실험 II -부산광역지역에 대한 국지순환모형의 적용-)

  • 김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • Since Pusan metropolitanarea where is composed complex terrain is connected to sea the sea-land breeze circulation and the mountain-valley circulation are apt to form A regional scale circulation system is formed at a region which has complex terrain because of curves of its and affect to the dispersion and advection of air pollutants. LCM Local Circulation Model which a propriety was verified described that sea breeze and valley wind at the daytime and land breeze and mountain wind at the nighttime were well devellped over the Pusan metropolital area. Next for the investigation of accuracy of simulated results an observed value at Kae-Kum and Su-Young on the pusan metropolitan area were compared with it at those points. From the comparison of the temperature and horizontal velocity between the results of LCM and an observed values they have a similar trend of a diurnal variation. For the prediction of dispersion and transportation of air pollutants the wind field should be calculated with high accuracy. A numerical simulation using LCM can provide more accuracy results around Pusan metropolitan area.

  • PDF