• Title/Summary/Keyword: vacuum tube

Search Result 236, Processing Time 0.027 seconds

Development of High-Sensitivity Ion Sources for Residual Gas Analyzer

  • Park, Chang-Jun;Han, Cheol-Su;An, Sang-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.104.2-104.2
    • /
    • 2013
  • A residual gas analyzer (RGA) system has been developed in this laboratory. Characteristics of the RGA system parts such as ion source, quadrupole mass filter and sensitivity are introduced. Some efforts have been made to improve performance of the two types of ion sources, open ion source (OIS) and closed ion source (CIS). A metal mesh was placed onto the electron beam entrance of the CIS anode tube to block the filament field penetration. Sensitivity of the CIS ion sources with and without the mesh was compared by mass spectra of SF6 gas (97% He base) introduced into the CIS anode through a needle valve. About ten-times improvement in the RGA sensitivity was observed for the CIS with the mesh in the electron entrance. Computer simulation showed an axi-symmetric anode potential distribution and improved focusing of the electron beam inside the anode tube with the mesh.

  • PDF

Computer Simulation for Development of Micro-Focus X-ray Generator (미소초점엑스선원 개발을 위한 전산모사)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.403-408
    • /
    • 2011
  • To develop the MFX (Micro-Focus X-ray) tube, the trajectories of electrons emitted from the field emission cathode was simulated using SIMION program. Regardless of starting position of the electron in emitter, we found out the fact that there is the optimum extractor voltage Ve, which can focus the electron beam on one place. Extractor voltage Ve varies depending on the source voltage Vs, but the ratio of two voltages (Ve/Vs) is always constant, its value was 99.4%. When the ratio of two voltages (Ve/Vs) was 99.4%, the beam diameter in the cross-over point was $1.2{\mu}m$. Because the focal spot size in MFXG (Micro-Focus X-ray Generator) can not be less than the cross-over diameter within MFX tube, it is important to find out the conditions that can make a smaller beam diameter. Therefore, the above results is considered to be a very important ones in the development of the MFXG.

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.125-131
    • /
    • 2015
  • We investigated the thermal characteristics of rotating anode X-ray tube to develop it for digital radiography by using computer simulation. The target which is the area of the anode struck by electrons is the most important component to get a long life of X-ray tube. So we analyze the thermal characteristics of the target and rotor assembly according to their emissivity by using ANSYS transient thermal simulation and then compare with the measured data of the target temperature operating in aging process of X-ray tube. Especially, keeping the lead coated layer as the role of metal lubricant on ball bearing enables to prevent the noise in rotating anode. The simulation result showed that its temperature was under the melting point of the lead in X-ray tube for digital radiography with 1.2 mm large focal spot 0.6 mm small focal spot and 150 kV tube voltage. We also investigated the relationship between the diameter of the anode shaft and the temperature of the anode and rotor assembly. It has been confirmed that the smaller anode shaft could be good for the rotor thermal characteristics.

Study on Vacuum Packaging of Field Emission Display (Field Emission Display의 고진공 실장에 관한 연구)

  • Lee, Duck-Jung;Ju, Byeong-Kwon;Jang, Jin;Oh, Myong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.103-106
    • /
    • 1999
  • In this paper, we suggest the FED packaging technology that have 4mm thickness, using sodalime glass-to-sodalime glass electrostatic bonding. It based on conventional silicon-glass bonding. The silicon film was deposited an around the exhausting hole on FED backside panel. And then, the silicon film of panel was successfully bonded with capping(bare) glass in vacuum environment and the FED panel was vacuum-sealed. In this method, we could achieve more 153 times increased conductance and 200 times increased vacuum efficiency than conventional tube packaging method. The vacuum level in panel, by SRG test, was maintained about low 10$_{-4}$ Torr during above two months And, the light emission was observed to 0.7-inch tubeless packaged FED. Then anode current was 34 $\mu$ A. Emission stability was constantly measured for 10 days.

  • PDF

A Study on the Collector Characteristics of Evacuated Double Glass Tube by Artificial Sun (인공태양에 의한 이중 진공 유리관의 집열특성에 관한 연구)

  • Nam, Yong-Han;Shin, Jae-Ho;Mo, Joung-Gun;Chung, Han-Shik;Jeong, Hyo-Min;Suh, Jeong-Se
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1542-1547
    • /
    • 2003
  • This paper represents the solar collector performance with type of an evacuate double glass, and a copper tube was installed in center of collector to get a solar thermal energy. The one module of solar collector and artificial sun were used in this experiment The distance between artificial sun and solar collector was fixed at 0.5m, and this experimental condition was focused on winter season. The experiments were carried out. three times for getting a accurate data and the heat amount of one module evacuate d solar collector was estimated at out. 48 kcal/hr.

  • PDF

A Study on the Performance Improvement of All-Glass type Solar Vacuum Collectors (완전유리식 진공관형 집열기의 성능 개선에 대한 연구)

  • Kang, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2002
  • This study has been carried out to study the thermal performance of an all-glass type solar collector tube when a heat transfer medium is used with a heat storage unit capable of preventing pressure build-up within the tube. The heat storage unit is devised such that it performs the dual function of relieving excessive pressure and storing solar thermal energy. Different types of heat storage medium are tested under heat-up phase of a collector tube. It is found that the proposed unit could be used quite effectively if one wishes to capitalize more aggressively in harnessing the solar energy.

Simulation of a natural circulation evaporative concentrator (자연순환형 소형 진공증발농축장치 시뮬레이션)

  • Park, Ji-Hoon;Kim, Nae-Hyun;Choi, Young-Min;Oh, Wang-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1283-1287
    • /
    • 2009
  • In this study, an analysis was performed on an evaporative steam generator (concentrator), where natural circulation convective boiling occurs on tube-side by condensing hot steam on shell-side. Existing correlations on two-phase pressure drop, boiling or condensation heat transfer were used for the analysis. The effect of number of tubes, tube length, etc. on thermal performance was investigated. Simulation results reveal that steam generation rate increases almost proportionally to the tube length, or number of tubes. It is also shown that water circulation rate decreases as tube length increases.

  • PDF

Development of Magnetic Abrasive Jet Machining System for Precision Internal Polishing of Circular Tubes (원형관의 내면정밀가공용 순환식 자기입자분사가공 시스템 개발)

  • 강윤희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.24-29
    • /
    • 1995
  • A recently developed finishing process using rotating magnetic field is known to be very efficient for the finishing of parts such as vacuum tube, sanitary tube, etc., which are difficult to be finished by the conventional finishing methods as they are generally curbed tubes. But, the finishing system using rotating magnetic field have the defect that is the cross section of workpiece only circle because of internal rotating tool. Therefore, new finishing process of the workpieces which cross section are not circle is important and required. magnetic abrasive jet machining is a new concept finishing process. It is the precision internal finishing method using working fluid mixed with magnetic abrasives, which is jetted into the internal surface of tube. And magnetic poles are equipped on external surface of tube. In this study new concept finishing process or, magnetic abrasive jet machining system was developed. machining condition was predicted using simulation and some characteristics of the finishing process was analyzed.

  • PDF

Low Temperature Sealing of Plasma Display Panel using Organic Material (유기물을 사용한 PDP 저온 접합)

  • 문승일;이덕중;김영조;이윤희;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.976-980
    • /
    • 2002
  • This paper repors on low temperature sealing process of PDP using binder and capping glass. The exhausting hole on rear glass of PDP was sealed by capping glass using screen-printed binder without exhausting glass tube. Based on the tubeless packaging process, out gassing problem could be reduced and vacuum conductance could be improved by eliminating exhaust tube.

A 30 W Copper Vapor Laser Using a Vacuum Tube Based Pulse Generator (진공관 전원방식 30 W급 구리증기레이저)

  • 진정태;차병헌;김철중;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.568-572
    • /
    • 2003
  • A longitudinal discharge heated copper vapor laser with internal diameter 28 mm and discharge length 1.3 m has been constructed and tested. At the discharging voltage 15.2 kV, pulse repetition rate 10 kHz, buffer gas pressure 40 mbar, and internal temperature of the laser plasma tube $1520^{\circ}C$, it delivers more than 30 W average laser outputs.