• Title/Summary/Keyword: vacuum deposition

Search Result 1,949, Processing Time 0.033 seconds

Large-Scale Vacuum Technologies for $730{\times}920$ AMOLED Production; The world's largest OLED deposition system

  • Hwang, Changhun;Han, Seung-Jin;Kim, Do-Gon;Yook, Sim-Man;Kim, Seung-Han;Kim, Jin-Hyung;Kim, Beom-jai;Won, You-Tae;Park, Ki-Joo;Kim, Kwang-Ho;Kim, Byung-Seok;Kang, Teak-Sang;Kim, Jung-Hwan;Seo, Sang-Won;Song, Ha-Jin;Sim, Hyung-Bo;Noh, Young-Bo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.668-672
    • /
    • 2005
  • Doosan DND, OLED manufacturing equipment maker, has developed the largest deposition system to produce $730{\times}920mm$ size AMOLED devices for the first time in the world. It is necessary for producing 40" AMOLED panels to develop the large-scaled vacuum technologies including ICP plasma, stretching glass chuck, organic deposition, metal deposition and hybrid encapsulation processes.

  • PDF

High indium incorporation in the growth of InGaAs on (100) GaAs by precursor alternating metalorganic chemical vapor deposition (Precursor alternating metalorganic chemical vapor deposition에 의한 (100) GaAs 기판위로의 InGaAs 성장시의 높은 indium 유입)

  • 정동근
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.354-358
    • /
    • 1996
  • High indium incorporation was observed in InGaAs growth by precursor alternating metalorganic chemical vapor deposition (PAMOCVD). A possible mechanism of high indium incorporation into the crystal in PAMOCVD was proposed by considering the decomposition products of gallium and indium precursors, and thus the different adsorption behavior of the decomposed precursor molecules.

  • PDF

Epitaxial Growth of Polyurea Film by Molecular Layer Deposition

  • Choe, Seong-Eun;Gang, Eun-Ji;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.2-264.2
    • /
    • 2013
  • Molecular layer deposition (MLD) is sequential, self-limiting surface reaction to form conformal and ultrathin polymer film. This technique generally uses bifunctional precursors for stepwise sequential surface reaction and entirely organic polymer films. Also, in comparison with solution-based technique, because MLD is vapor-phase deposition based on ALD, it allows epitaxial growth of molecular layer on substrate and is especially good for surface reaction or coating of nanostructure such as nanopore, nanochannel, nanwire array and so on. In this study, polyurea film that consisted of phenylenediisocyanate and phenylenediamine was formed by MLD technique. In situ Fourier Transform Infrared (FTIR) measurement on high surface area SiO2 substrate was used to monitor the growth of polyurethane and polyurea film. Also, to investigate orientation of chemical bonding formed polymer film, plan-polarized grazing angle FTIR spectroscopy was used and it showed epitaxial growth and uniform orientation of chemical bones of polyurea films.

  • PDF

The Low Resistivity Gate Metals Formation of Thin Film Transistors by Selective CVD

  • Park, S.J.;Bae, N.J.;Kim, S.H.;Shin, H.K.;Choi, J.S.;Yee, J.G.;Choi, S.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.108-112
    • /
    • 1995
  • Copper and aluminum selective deposition using (hfac)Cu(VTMS) and DMEAA precursors were performed in a warm-wall low pressure chemical vapour deposition reactor. The films of Cu and AI deposited on Corning 7059 glass and quartz with pattern of Cr seed metal. Selective deposition can be achieved at a pressure range of from 10-1 to 10 torr and substrate temperature range of 150-25$0^{\circ}C$. Selective deposition of Cu and AI by CVD is one of candidate for gate material formation fo larger area and high resolution plat panel displays.

  • PDF

Physical Vapour Deposition Fundamentals and Technical Aspects

  • Juhn, Hermann A.
    • Journal of Surface Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.114-129
    • /
    • 1988
  • The principles of the physical vapour deposition processes(PVC); evaporation, sputting, and ion plating are presented and compared with each other with respect to coating properties, deposition rate and process control. The significance of coating sources and vacuum equipment for hard materials coating is discussed.

  • PDF

The Magnetic Filtering Vacuum Arc Film Deposition System and Its Applications

  • Wang, G.F.;Zhang, H.X.;Zhang, H.J.;Zhu, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.137-140
    • /
    • 1997
  • A cathodic arc with beam filter is employed for the deposition of metallic and hydrogen-free amorphous carbon films. A solenoid filter is used to prevent macropaticles and nonionized atoms from reaching the substrate. The detail transport characters of the filter are presented in the paper. With an optmum filter arrangement we are able to obtain a filter output of 18.4% of the total number of ions produced by the vacuum arc discharge. The deposited amorphous cabon thin film contains no hydrogen and a high fraction of $sp^3$ is determined by XPS. A dense Ti film deposited on H13 steel improves the corrosion resistance of the H13 steel and significant improvements of corrosion resistance were observed by implanting Ti, C in the film.

  • PDF

Influence of vacuum Pressure on Electrochnnc Properties of $WO_3$ Films (진공도가 텅스텐 산화물 방막의 전기적 착색특성에 미치는 영향)

  • Lee, Kil-Dong
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 1997
  • The electrochromic $WO_3$ thin films were prepared by using the electron beam deposition technique. The influences of vacuum pressure were examined in terms of the surface morphology and the electrochromic properties of films. From the results, the electrochromic behavior of electron beam deposited films strongly depends on the vacuum pressure during deposition. The film prepared under a vacuum pressure of $5{\times}10^4$ mbar was found to be rather stable when subjected to the repeated coloring and bleaching cycles in an aqueous acid electrolyte of 1M $H_2SO_4$. It was also found that the degraded film by repeated cycling in the aqueous acid solution changed the grain shape of film surface.

  • PDF

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

A Study on Dependent Characteristic between The Organic Deposition Rate and The Performance in Organic Light Emitting Device

  • Kim, Mun-Su;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.150.2-150.2
    • /
    • 2015
  • In this study, we analyzed the electric and optical characteristics by using various deposition rate ($0.5{\AA}$, $1.0{\AA}$ and $1.5{\AA}/s$) in order to enhance the performance in organic light-emitting devices (OLED). The organic multi-layer structures were deposited with NPB ($500{\AA}$ as hole transport layer), Alq3 ($600{\AA}$ as electron transport layer and emission layer) and LiF ($8{\AA}$ as electron injection layer) via SUNIC PLUS200 on Glass/ITO substrates. In this experiment, we examined the relationship between porous state of organic deposition and mobility of the organic materials. Among the three deposition rates, $0.5{\AA}/s$ achieved the highest performance of (10,786cd/m2, 4.387cd/A) comparing with that of $1{\AA}/s$ (7,779cd/m2, 3.281cd/A) and $1.5{\AA}/s$ (5,167cd/m2, 2.693cd/A). We confirmed that low deposition rate helps to arrange organic materials densely and to move easily another atomic location using inter-chain transporting by orbital overlap.

  • PDF

The transparent and conducting tin oxide thin films by the remote plasma chemical vapor deposition (원격플라즈마화학증착에 의한 투명전도성 산화주석 박막)

  • 이흥수;윤천호;박정일;박광자
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • Transparent and conducting tin oxide films were prepared on Pyrex glass substrates by the remote plasma chemical vapor deposition (RPCVD). The main control variables of the RPCVD process included the deposition time, the flow rates of tetramethyltin, oxygen and argon, the radio-frequency power, and the substrate temperature. Dependence of the deposition rate, electric resistivity, optical transmittance and crystal structure on these parameters was systematically examined to prepare high qualities of tin oxide films and to better understand RPCVD process. The effect of those parameters on the properties of tin oxide films in complicatedly related on another. A tin oxide film parameters on the protimized deposition conditions exhibited deposition rate of 102 $\AA$/min, electric resistivity of $9.7\times 10^{-3}\Omega$cm and visible transmittance of ~80%.

  • PDF