• Title/Summary/Keyword: vacuum concentration

Search Result 659, Processing Time 0.03 seconds

Hydroxyl Radical Species Generated by Non-thermal Direct Plasma Jet and Their Qualitative Evaluation

  • Ghimire, B.;Hong, S.I.;Hong, Y.J.;Choi, E.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.2-198.2
    • /
    • 2016
  • Reactive oxygen and nitrogen species (RONS) can be generated by using non-thermal atmospheric pressure plasma jet which have profound biomedical applications [1, 2]. In this work, reactive oxygen species like hydroxyl radical (OH) are generated by using non-thermal direct plasma jet above water surface using Ar gas and their properties have been studied using ultraviolet absorption spectroscopy. OH radicals are found to be generated simultaneously with the discharge current with concentration of $2.7{\times}1015/cm3$ at 7mm above water surface while their persistence time have been measured to be $2.8{\mu}S$. In addition, it has been shown that plasma initiated ultraviolets play a major role to generate RONS inside water. Further works are going on to measure the temporal behavior of OH and $O2^*-$.

  • PDF

Synthesis and comparison of pure TiO2 and metal/non-metal doped TiO2 as a photocatalyst

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.370.1-370.1
    • /
    • 2016
  • Volatile organic compounds (VOCs) are considered hazardous air pollutants and these are emitted from building materials and household products. VOCs can cause global warming as well as human sickness, and even cancer. Photocatalysis provides a way of converting VOCs into harmless materials. Various researches have shown that $TiO_2$ is the most efficient photocatalysts due to its excellent activity. In this study, metal/non-metal doped $TiO_2$ particles are synthesized for the enhancement of the photocatalytic properties of pure $TiO_2$. By metal/non-metal doping, band gap energies of prepared samples were analyzed by UV/Visible spectrophotometer. The physical and chemical properties of synthesized powder were characterized by field emission scanning electron microscope, by BET for measuring their specific surface area, and by XRD for phase identification and particle size determination. Degradation ability for p-xylene was evaluated through monitoring the concentration in a closed chamber. Relation between their properties and decomposition abilities for VOC were evaluated based on the experimental results.

  • PDF

Effect On Glass Texturing For Enhancement of Light Trapping in Perovskite Solar Cells

  • Kim, Dong In;Nam, Sang-Hun;Hwang, Ki-Hwan;Lee, Yong-Min;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.387.2-387.2
    • /
    • 2016
  • Glass texturing is a sufficient method for changing the surface morphology to enhance the light trapping. In this study, glass texturing was applied to the perovskite solar cell for improving the current density. Glass substrates (back-side glass of FTO coated glass substrate) were textured by randomly structure assisted wet etching process using diluted HF solution at a constant concentration of etchants (HF:H2O=1:1). Then, the light trapping properties of suitable films were controlled over a wide range by varying the etching time (1, 2, 3, 4 and 5 min.). The surface texturing changed the reflected light in an angle that it can be reflected by substrate glass surface. As a result, Current density and cell efficiency were affected by light trapping layer using glass texturing method in perovskite solar cells.

  • PDF

Enhanced thermomechanical properties of poly(ethylene oxide) and functionalized bacterial cellulose nanowhiskers composite nanofibers

  • Yun, Ok-Ja
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.376-376
    • /
    • 2016
  • Poly(ethylene oxide) (PEO)/functionalized bacterial cellulose nanowhiskers (f-BCNW) (0.1 wt%) composite nanofibers were fabricated by electrospinning process and the thermomechanical properties were significantly enhanced more than the PEO and PEO/bacterial cellulose nanowhiskers (BCNW) (0.1 wt%) composite nanofibers. The functionalization of BCNW (f-BCNW) was performed by microwave plasma treatment for effects of nitrogen functionalization of chemically-driven BCNW. The N-containing functional groups of f-BCNW enhanced chemical bonding between the hydroxyl groups of the polymer chains in the PEO matrix and diameter size of PEO/f-BCNW (0.1 wt%) composite nanofibers were decreased more than PEO and PEO/BCNW (0.1 wt%) composite nanofibers on the same concentration. The strong interfacial interactions between the f-BCNW nanofillers and polymer matrix were improved the thermomechanical properties such as crystallization temperature, weight loss and glass transition temperature (Tg) compared to PEO and PEO/BCNW composites nanofibers. The results demonstrated that N2 plasma treatment of BCNW is very useful in improving thermal stability for bio-applications.

  • PDF

Interplay between Defect Propagation and Surface Hydrogen in Silicon Nanowire Kinking Superstructures

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.221.1-221.1
    • /
    • 2015
  • The vapor-liquid-solid (VLS) method, where the "liquid" catalytic droplets collecting atoms from vapor precursors build the solid crystal layers via supersaturation, is a ubiquitous technique to synthesize 1-dimensional nanoscale materials. However, the lack of fundamental understanding of chemical information governing the process inhibits the rational route to the structural programming. By combining the in situ or operando IR spectroscopy with post-growth high resolution electron microscopy, we show the strong correlation between the surface chemical species concentration and nanowire structures. More specifically, the critical role of surface adsorbed hydrogen, generated from the decomposition of Si2H6 precursor on the interplay between nanowire / kinking and the defect propagation is demonstrated. Our results show that adsorbed hydrogen atoms are responsible for selecting -oriented growth and indicate that a twin boundary imparts structural coherence. The twin boundary, only continuous at / kinks, reduces the symmetry of the trijunction and limits the number of degenerate directions available to the nanowire. These findings constitute a general approach for rationally engineering kinking superstructures and also provide important insight into the role of surface chemical bonding during VLS synthesis.

  • PDF

Nanoscale NiO for transparent solid state devices

  • Patel, Malkeshkumar;Kim, Joondong;Park, Hyeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.243.2-243.2
    • /
    • 2015
  • We report a high-performing nanoscale NiO thin film grown by thermal oxidation of sputtered Ni film. The structural, physical, optical and electrical properties of nanoscale NiO were comprehensively investigated. A quality transparent heterojunction (NiO/ZnO) was formed by large-area applicable sputtering deposition method that has an extremely low saturation current of 0.1 nA. Considerable large rectification ratio of more than 1000 was obtained for transparent heterojunction device. Mott-Schottky analyses were applied to develop the interface of NiO and ZnO by establishing energy diagrams. Nanoscale NiO has the accepter carrier concentration of the order of 1018 cm-3. Nanoscale NiO Schottky junction device properties were comprehensively studied using room temperature impedance spectroscopy.

  • PDF

Size Control of PbS Colloidal Quantum Dots and Their Application to Photovoltaic Devices

  • Lee, Wonseok;Ryu, Ilhwan;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.1-249.1
    • /
    • 2015
  • Quantum dots (QDs) are attracting growing attention for photovoltaic device applications because of their unique electronic, optical and physical properties. Lead sulfide (PbS) QDs are one of the most widely studied materials for the devices and known to have size-tunable properties. In this context, we investigated the relationship between the size of PbS QDs and two synthesizing conditions, a concentration of ligand, oleic acid in this work, and injection temperature. The inverted colloidal quantum dot solar cells based on the heterojunction of n-type zinc oxide layer and p-type PbS QDs were also fabricated. The size of the QDs and cell properties were observed to depend on both the QD synthesizing conditions, and hence the overall efficiency of the cell could vary even though the size of QDs used was same. The QD synthesizing conditions were finally optimized for the maximum cell efficiency.

  • PDF

Technique for Soil Solution Sampling Using Porous Ceramic Cups

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.583-586
    • /
    • 1998
  • Porous ceramic cups are used for monitoring ion concentration in soil solutions in various time course and depth. A soil solution sampler was constructed in laboratory by inserting pliable perfluoroalkoxy(PFA) tubings into porous cup through holes in PVC rod segment which plugged top opening of the porous cup. The system was installed in drip irrigated soil in a vertical position, and nitrogen movement below the drip basin was monitored. To collect soil solution, vacuum in the cup was applied with a hand vacuum pump. The samples obtained were sufficient enough to run quantitative analyses for a number of chemicals. Nitrogen transformation and movement could be well defined, and the system seemed to be relevant to the other soil solution samplers in monitoring chemical movement in soil. Although this system has general deficiencies found in the other samplers using ceramic cup, it could be easily constructed at a low cost. Since the tubing was pliable, the cups could be installed in horizontal position, and this allows installations of the cups at more precise depth increments and also more precise samplings of soil solution at each depth.

  • PDF

Influence of Silver Ions in HA Film on Morphology of Macrophages

  • Feng, Q.L.;Kim, T.N.;Kim, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.50-56
    • /
    • 1998
  • Ion beam assisted deposition (IBAD) was successfully used to produce a dense and ultra-adherent Hydroxyapatite (HA) film on titanium alloy and alumina. Recently it is also proved that the HA coatings on alumina substrate treated with 20 ppm $AgNO_3$ had the structure of $(Ag, Ca)_10(PO_4)6(OH)_2$, which exhibited excellent antimicrobial effects. The present paper aims to morphlogically characterize the adhesion of macrophages on newly developed Ag-HA coated alumina and Ti6A14V substrates and to evaluate the biocompatibility of the coatings in vitro. It can be found that the cell number on alumina of the concentration of $AgNO_3$ in the treatment, the cell number on Ag-HA coatings decreased. Up to 20 ppm $AgNO_3$ by Ag-treatment, the morphological development of the cells on Ag-HA coating was similar to that of the cells on HA coating, suggesting the biotolerance of the Ag-HA coatings.

  • PDF

Investigation of the Performance Characteristics of an In-Situ Particle Monitor at Low Pressures Using Aerodynamic Lenses (저압상태에서 공기역학적 렌즈를 이용한 In-Situ Particle Monitor의 성능특성 분석)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1359-1367
    • /
    • 2000
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at low pressures has been studied. We generated the uniform sized methylene blue particle beams using three identical aerodynamic lenses in the center of the vacuum line, and measured the detection efficiency of the ISPM. The effects of particle size, particle concentration, mass flow rate, system pressure, and arrangement of aerodynamic lenses on the detection efficiency of the ISPM were examined. Results show that the detection efficiency of the ISPM greatly depends on the mass flow rate, and the particle Stokes number. We also found that the optimum Stokes number ranges from 0.4 to 1.9 for the experimental conditions.