• Title/Summary/Keyword: vacuolar invertase

Search Result 3, Processing Time 0.022 seconds

The Role of Rice Vacuolar Invertase2 in Seed Size Control

  • Lee, Dae-Woo;Lee, Sang-Kyu;Rahman, Md Mizanor;Kim, Yu-Jin;Zhang, Dabing;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.711-720
    • /
    • 2019
  • Sink strength optimizes sucrose import, which is fundamental to support developing seed grains and increase crop yields, including those of rice (Oryza sativa). In this regard, little is known about the function of vacuolar invertase (VIN) in controlling sink strength and thereby seed size. Here, in rice we analyzed mutants of two VINs, OsVIN1 and OsVIN2, to examine their role during seed development. In a phenotypic analysis of the T-DNA insertion mutants, only the OsVIN2 mutant osvin2-1 exhibited reduced seed size and grain weight. Scanning electron microscopy analysis revealed that the small seed grains of osvin2-1 can be attributed to a reduction in spikelet size. A significant decrease in VIN activity and hexose level in the osvin2-1 spikelets interfered with spikelet growth. In addition, significant reduction in starch and increase in sucrose, which are characteristic features of reduced turnover and flux of sucrose due to impaired sink strength, were evident in the pre-storage stage of osvin2-1 developing grains. In situ hybridization analysis found that expression of OsVIN2 was predominant in the endocarp of developing grains. A genetically complemented line with a native genomic clone of OsVIN2 rescued reduced VIN activity and seed size. Two additional mutants, osvin2-2 and osvin2-3 generated by the CRISPR/Cas9 method, exhibited phenotypes similar to those of osvin2-1 in spikelet and seed size, VIN activity, and sugar metabolites. These results clearly demonstrate an important role of OsVIN2 as sink strength modulator that is critical for the maintenance of sucrose flux into developing seed grains.

Characterization of Neutral Invertase from Fast Growing Pea (Pisum sativum L.) Seedlings after Gibberellic Acid (GA) Treatment (GA 처리 후 급 성장하는 완두콩(Pisum sativum L.) 발아체로부터 분리된 중성 invertase의 특성)

  • Kim, Donggiun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1021-1026
    • /
    • 2015
  • Invertase (β-D-fructosfuranosidase, EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Three biochemical subgroups of invertases have been investigated in plants: vacuolar (soluble acid), cytoplasmic (soluble alkaline), and cell wall-bound (insoluble acid) invertases. An isoform of neutral invertase was purified from pea seedlings (Pisum sativum L.) and treated with gibberellic acid (GA) by sequential procedures consisting of ammonium sulfate precipitation, ion-exchange chromatography, absorption chromatography, and reactive green-19 affinity chromatography. The results of the overall insoluble invertase purification were a 430-fold increase. The purified neutral invertase was not glycosylated and had an optimum pH between neutral and alkaline (pH 6.8-7.5). It was inhibited by Tris, as well as by heavy metals, such as Hg2+ and Cu2+. Typical Michaelis–Menten kinetics were observed when the activity of the purified invertase was measured, with sucrose concentrations up to 100 mM. The Km and Vmax values were 12.95 mM and 2.98 U/min, respectively. The molecular mass was around 20 kDa. The sucrose-cleaving enzyme activity of this enzyme is similar to that of sucrose synthase and fructosyltransferase, but its biochemical characteristics are different from those of sucrose synthase and fructosyltransferase. Based on this biochemical characterization and existing knowledge, neutral INV is an invertase isoform in plants.