• Title/Summary/Keyword: vaccine for coronavirus

Search Result 129, Processing Time 0.025 seconds

Overlooking the Era of Vaccine against Coronavirus Disease 2019 (Coronavirus Disease 2019, 백신의 시대를 조망한다)

  • Lee, Sun-Hee
    • Health Policy and Management
    • /
    • v.31 no.1
    • /
    • pp.1-4
    • /
    • 2021
  • With this as a momentum of approval Pfizer vaccine against coronavirus disease 2019 (COVID-2019), it is changed to the era of vaccine rapidly. Most countries are trying to reserve effective vaccines and inoculate vaccines into high-risk populations for achieving community immunity. I reviewed several vaccine-related issues to be confronted for moving up to the end of COVID-2019: the efficacy and effectiveness of the approved vaccines, the priorities for vaccination into target groups, side effects, and distrust towards COVID-2019 vaccines. Evidence-based decision-making in the policy process and collaboration with professional groups are the most effective strategies for driving successful vaccination policy.

Newly Emerging Human Coronaviruses: Animal Models and Vaccine Research for SARS, MERS, and COVID-19

  • Pureum Lee;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.28.1-28.25
    • /
    • 2020
  • The recent emergence of the novel coronavirus (CoV) or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a global threat to human health and economy. As of June 26, 2020, over 9.4 million cases of infection, including 482,730 deaths, had been confirmed across 216 countries. To combat a devastating virus pandemic, numerous studies on vaccine development are urgently being accelerated. In this review article, we take a brief look at the characteristics of SARS-CoV-2 in comparison to SARS and Middle East respiratory syndrome (MERS)-CoVs and discuss recent approaches to coronavirus disease-2019 (COVID-19) vaccine development.

COVID-19 Vaccination for Pilots and Air Traffic Controllers (항공종사자와 코로나바이러스감염증-19 백신 예방 접종)

  • Kwon, Young Hwan
    • Korean journal of aerospace and environmental medicine
    • /
    • v.31 no.1
    • /
    • pp.13-16
    • /
    • 2021
  • The coronavirus disease-19 (COVID-19) vaccine is expected to play an important role in stopping the pandemic. Studies show that COVID-19 vaccines are effective at keeping you from getting COVID-19. Getting a COVID-19 vaccine will also help keep you from getting seriously ill even if you do get COVID-19. Efforts to find an effective vaccine against severe acute respiratory syndrome coronavirus 2 have progressed unprecedentedly through active support from public research grants and private-public partnership programs. Clinical studies have been actively conducted, and some vaccines are being vaccinated with approval for urgent use. The WHO has approved and supplied the Pfizer-BioNTech COVID-19 vaccine and the Oxford-AstraZeneca COVID-19 vaccine. In Korea, the Oxford-AstraZeneca vaccine was approved for urgent use, and vaccination began on February 26, 2021. In this paper, the efficacy and side effects of each vaccines and the effect on pilots and air traffic controllers related to COVID-19 vaccination were investigated in terms of aviation medicine.

Coronavirus disease 2019 (COVID-19) vaccine platforms: how novel platforms can prepare us for future pandemics: a narrative review

  • Lee, Jae Kyung;Shin, Ok Sarah
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.2
    • /
    • pp.89-97
    • /
    • 2022
  • More than 2 years after the explosion of the coronavirus disease 2019 (COVID-19) pandemic, extensive efforts have been made to develop safe and efficacious vaccines against infections with severe acute respiratory syndrome coronavirus 2. The pandemic has opened a new era of vaccine development based on next-generation platforms, including messenger RNA (mRNA)-based technologies, and paved the way for the future of mRNA-based therapeutics to provide protection against a wide range of infectious diseases. Multiple vaccines have been developed at an unprecedented pace to protect against COVID-19 worldwide. However, important knowledge gaps remain to be addressed, especially in terms of how vaccines induce immunogenicity and efficacy in those who are elderly. Here, we discuss the various vaccine platforms that have been utilized to combat COVID-19 and emphasize how these platforms can be a powerful tool to react quickly to future pandemics.

Progress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2-Specific Immune Responses

  • Kim, Kyun-Do;Hwang, Insu;Ku, Keun Bon;Lee, Sumin;Kim, Seong-Jun;Kim, Chonsaeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1109-1115
    • /
    • 2020
  • The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.

Henoch-Schönlein purpura following mRNA COVID-19 vaccination: a case report

  • Mi-Ok Lee;Seok-Ju Yoo
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.166-170
    • /
    • 2024
  • The coronavirus disease 2019 (COVID-19) vaccine was developed to provide immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first reported in 2019. The vaccine has proven to be effective in reducing severity and mortality and preventing infection. Henoch-Schönlein purpura is an autoimmune vasculitis (immunoglobulin A vasculitis). Historically, vaccines have been administered primarily to children, and Henoch-Schönlein purpura has often been reported in children following vaccination. However, since the start of COVID-19 vaccination, an increasing number of cases have been reported in adults. Here, we report a case of a patient who developed hematuria and proteinuria after receiving the messenger RNA COVID-19 vaccine. A 22-year-old man presented to the hospital with a lower extremity rash, bilateral ankle pain, and abdominal pain 18 days after receiving the COVID-19 vaccine. The man had no significant medical history and was not taking any medications. Laboratory tests showed normal platelet counts but elevated white blood cell counts and C-reactive protein and fibrinogen levels. He was treated with the non-steroidal anti-inflammatory drugs, pheniramine and prednisolone. At 40 days after starting treatment, C-reactive protein levels were within normal limits, and no hematuria was observed. Treatment was terminated when the purpura disappeared. This report is intended to highlight the need for further research to be proactive and carefully monitor for conditions associated with the COVID-19 vaccine.

Updates on the coronavirus disease 2019 vaccine and consideration in children

  • Kang, Hyun Mi;Choi, Eun Hwa;Kim, Yae-Jean
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.7
    • /
    • pp.328-338
    • /
    • 2021
  • Humanity has been suffering from the global severe acute respiratory syndrome coronavirus 2 pandemic that began late in 2019. In 2020, for the first time in history, new vaccine platforms-including mRNA vaccines and viral vector-based DNA vaccines-have been given emergency use authorization, leading to mass vaccinations. The purpose of this article is to review the currently most widely used coronavirus disease 2019 vaccines, investigate their immunogenicity and efficacy data, and analyze the vaccine safety profiles that have been published, to date.

Vaccines development in India: advances, regulation, and challenges

  • Rakshita Salalli;Jyoti Ram Dange;Sonia Dhiman;Teenu Sharma
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.193-208
    • /
    • 2023
  • One of the most significant medical advancements in human history is the development of vaccines. Progress in vaccine development has always been greatly influenced by scientific human innovation. The main objective of vaccine development would be to acquire sufficient evidence of vaccine effectiveness, immunogenicity, safety, and/or quality to support requests for marketing approval. Vaccines are biological products that enhance the body's defenses against infectious diseases. From the first smallpox vaccine to the latest notable coronavirus disease 2019 nasal vaccine, India has come a long way. The development of numerous vaccines, driven by scientific innovation and advancement, combined with researcher's knowledge, has helped to reduce the global burden of disease and mortality rates. The Drugs and Cosmetics Rules of 1945 and the New Drugs and Clinical Trials Rules of 2019 specify the requirements and guidelines for CMC (chemistry, manufacturing, and controls) for all manufactured and imported vaccines, including those against coronavirus infections. This article provides an overview of the regulation pertaining to the development process, registration, and approval procedures for vaccines, particularly in India, along with their brief history.

Comparison of immune responses of dogs and guinea pigs inoculated with inactivated canine coronavirus vaccines (개 코로나바이러스 불활화 백신에 대한 개와 기니픽 간의 면역반응 비교)

  • An, Dong-jun;Kim, Byoung-han;Jung, Byeong-yeal;Yi, Chul-hyun;Jeon, Woo-jin;Lee, Pil-soo;Chung, Gab-soo
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.2
    • /
    • pp.215-221
    • /
    • 2005
  • Canine coronavirus (CCV) causes a mild gastroenteritis in dogs. The virus is highly contagious. Although the virus was isolated more than thirty years ago, canine coronavirus infection continues to be a widespread problem. Mixed infections with both CCV and canine parvovirus (CPV) are common. Four kinds of commercial killed CCV vaccines are available in Korea. All the commercial vaccines should pass the National Assay for Veterinary Biologicals prior to release. For the potency test of CCV vaccine, it is necessary to use CCV antibody free dogs. The test requires not only kennels but high cost. To develop easy, efficient and economic potency test method for killed CCV vaccine using laboratory animals, a series of experiments with rabbits and guinea pigs were carried out in this study. In the preliminary test, the guinea pigs showed better immune responses than rabbits. The guinea pig was also easy to manage. So guinea pig was selected for the potency test animals. When the guinea pigs were inoculated twice with one dose of vaccine intramuscuarly each, slower and a little lower SN antibody titers were induced in guinea pigs than in dogs (about 2 kg body weight Beagle strain) given the same posology as guinea pigs'. It was concluded that guinea pigs could be substituted for dogs in the potency test of killed CCV vaccine.

Steroid injections in pain management: influence on coronavirus disease 2019 vaccines

  • Hong, Sung Man;Park, Yeon Wook;Choi, Eun Joo
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) pandemic, which has been rampant since the end of 2019, has evidently affected pain management in clinical practice. Fortunately, a COVID-19 vaccination program is currently in progress worldwide. There is an ongoing discussion that pain management using steroid injections can decrease COVID-19 vaccine efficacy, although currently there is no direct evidence to support this statement. As such, the feeling of pain in patients is doubled in addition to the co-existing ill-effects of social isolation associated with the pandemic. Thus, in the COVID-19 era, it has become necessary that physicians be able to provide high quality pain management without negatively impacting COVID-19 vaccine efficacy. Steroids can alter the entire process involved in the generation of adaptive immunity after vaccination. The period of hypophysis-pituitary-adrenal axis suppression is known to be 1 to 4 weeks after steroid injection, and although the exact timing for peak efficacy of COVID-19 vaccines is slightly different for each vaccine, the average is approximately 2 weeks. It is suggested to avoid steroid injections for a total of 4 weeks (1 week before and after the two vaccine doses) for the double-shot vaccines, and for 2 weeks in total (1 week before and after vaccination) for a single-shot vaccine. This review focuses on the basic concepts of the various COVID-19 vaccines, the effect of steroid injections on vaccine efficacy, and suggestions regarding an appropriate interval between the administration of steroid injections and the COVID-19 vaccine.