• 제목/요약/키워드: vacancy defects

검색결과 84건 처리시간 0.035초

Effects of fission product doping on the structure, electronic structure, mechanical and thermodynamic properties of uranium monocarbide: A first-principles study

  • Ru-Ting Liang;Tao Bo;Wan-Qiu Yin;Chang-Ming Nie;Lei Zhang;Zhi-Fang Chai;Wei-Qun Shi
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2556-2566
    • /
    • 2023
  • A first-principle approach within the framework of density functional theory was employed to study the effect of vacancy defects and fission products (FPs) doping on the mechanical, electronic, and thermodynamic properties of uranium monocarbide (UC). Firstly, the calculated vacancy formation energies confirm that the C vacancy is more stable than the U vacancy. The solution energies indicate that FPs prefer to occupying in U site rather than in C site. Zr, Mo, Th, and Pu atoms tend to directly replace U atom and dissolve into the UC lattice. Besides, the results of the mechanical properties show that U vacancy reduces the compressive and deformation resistance of UC while C vacancy has little effect. The doping of all FPs except He has a repairing effect on the mechanical properties of U1-xC. In addition, significant modifications are observed in the phonon dispersion curves and partial phonon density of states (PhDOS) of UC1-x, ZrxU1-xC, MoxU1-xC, and RhxU1-xC, including narrow frequency gaps and overlapping phonon modes, which increase the phonon scattering and lead to deterioration of thermal expansion coefficient (αV) and heat capacity (Cp) of UC predicted by the quasi harmonic approximation (QHA) method.

분자 동역학을 이용한 점 결함 극 저 에너지 실리콘 이온 주입에 관한 연구 (A study on the silicon point defects and ultra-low energy si ion implantation using classical molecular dynamics)

  • 강정원;손명식;변기량;황일정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.335-338
    • /
    • 1998
  • We have calculated ultra-low energy silicon-self ion implantations and silicon damages through classical molecular dynamics simulation using empirical potentials. We tested whether the recently developed environment-dependent interatomic ptential (EDIP) was suitable for ultra low ion implantation simulation, and found that point defects formation energies were in good agrrement with other theoretical calculations, but the calculated vacancy migration energy was overestimated. The number of isolated defects that are produced by collision cascades are onlya few of the total number of defects, and fmost of the damages are concentrated into amorphous-like pockets.

  • PDF

주기적 결함을 가진 철 단층의 전자구조와 자성 (Electronic Structure and Magnetism of Fe Monolayer with Periodic Defects)

  • ;;이재일
    • 한국자기학회지
    • /
    • 제19권5호
    • /
    • pp.161-164
    • /
    • 2009
  • 주기적 결함이 철 단층의 자성에 미치는 영향을 탐구하기 위해 전전자 총퍼텐셜 보강평면파 에너지 띠 방법을 이용하여 전자구조를 계산하였다. 결함은 원자 한 개가 빈 점결함, 각기 3개, 5개, 7개의 원자자리가 비어 있는 I 자형, + 모양, H 자 모양을 고려하였다. 빈자리에 가까이 있는 철 원자의 자기모멘트가 가장 컸으며, 결함의 원자수가 증가할수록 그 값도 증가하여, 점결함의 경우 3.08 보어마그네톤이었으며, I 자형, + 모양 및 H자 모양의 경우 각기 3.09, 3.15, 3.30 보어마그네톤이었다.

Molecular dynamics simulations of the coupled effects of strain and temperature on displacement cascades in α-zirconium

  • Sahi, Qurat-ul-ain;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.907-914
    • /
    • 2018
  • In this article, we conducted molecular dynamics simulations to investigate the effect of applied strain and temperature on irradiation-induced damage in alpha-zirconium. Cascade simulations were performed with primary knock-on atom energies ranging between 1 and 20 KeV, hydrostatic and uniaxial strain values ranging from -2% (compression) to 2% (tensile), and temperatures ranging from 100 to 1000 K. Results demonstrated that the number of defects increased when the displacement cascade proceeded under tensile uniaxial hydrostatic strain. In contrast, compressive strain states tended to decrease the defect production rate as compared with the reference no-strain condition. The proportions of vacancy and interstitial clustering increased by approximately 45% and 55% and 25% and 32% for 2% hydrostatic and uniaxial strain systems, respectively, as compared with the unstrained system, whereas both strain fields resulted in a 15-30% decrease in vacancy and interstitial clustering under compressive conditions. Tensile strains, specifically hydrostatic strain, tended to produce larger sized vacancy and interstitial clusters, whereas compressive strain systems did not significantly affect the size of defect clusters as compared with the reference no-strain condition. The influence of the strain system on radiation damage became more significant at lower temperatures because of less annealing than in higher temperature systems.

Point-defect study from low-temperature photoluminescence of ZnSe layers through the post-annealing in various ambient

  • Lee, Sang-Youl;Hong, Kwang-Joon;Kim, Hae-Jeong
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.378-378
    • /
    • 2010
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low, temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_2$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV. The exciton peak, $I_l^d$, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy.

  • PDF

THE FORMATION MECHANISM OF GROWN-IN DEFECTS IN CZ SILICON CRYSTALS BASED ON THERMAL GRADIENTS MEASURED BY THERMOCOUPLES NEAR GROWTH INTERFACES

  • Abe, Takao
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.187-207
    • /
    • 1999
  • The thermal distributions near the growth interface of 150mm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10m from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it si confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient (G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective lengths of the thermal gradient for defect generation are varied, were defined the effective length as 10mm from the interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitial. The experimental results which FZ and CZ crystals are detached from the melt show that growth interfaces are filled with vacancy. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitial are necessary. Such interstitial recombine with vacancies which were generated at the growth interface, next occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by the distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melt, respectively.

  • PDF

Primary damage of 10 keV Ga PKA in bulk GaN material under different temperatures

  • He, Huan;He, Chaohui;Zhang, Jiahui;Liao, Wenlong;Zang, Hang;Li, Yonghong;Liu, Wenbo
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1537-1544
    • /
    • 2020
  • Molecular dynamics (MD) simulations were conducted to investigate the temperature effects on the primary damage in gallium nitride (GaN) material. Five temperatures ranging from 300 K to 900 K were studied for 10 keV Ga primary knock-on atom (PKA) with inject direction of [0001]. The results of MD simulations showed that threshold displacement energy (Ed) was affected by temperatures and at higher temperature, it was larger. The evolutions of defects under various temperatures were similar. However, the higher temperature was found to increase the peak number, peak time, final time and recombination efficiency while decreasing the final number. With regard to clusters, isolated point defects and little clusters were common clusters and the fraction of point defects increased with temperature for vacancy clusters, whereas it did not appear in the interstitial clusters. Finally, at each temperature, the number of Ga interstitial atoms was larger than that of N and besides that, there were other different results of specific types of split interstitial atoms.

Catalytic Breakdown of Graphene by Gold

  • 이경재;양미현;임규욱;강태희;정석민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.214-214
    • /
    • 2012
  • It was reported that oxidative etching of graphene occurs at about $450-550^{\circ}C$ under oxygen atmosphere. We found catalytic breakdown of graphene by Au on the SiOx surface. This catalytic process was investigated using x-ray photoelectron spectroscopy and absorption spectroscopy at 4D PES beamline in PAL. Spectrosopic results suggest that the destruction of graphene is initiated by catalytic interaction between the oxidized gold and carbons in vacancy defects of graphene.

  • PDF

Computational study of protactinium incorporation effects in Th and Th compounds

  • Daroca, D. Perez;Llois, A.M.;Mosca, H.O.
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2285-2289
    • /
    • 2020
  • Protactinium contamination is a mayor issue in the thorium fuel cycle. We investigate, in this work, the consequences of Pa incorporation in vacancy defects and interstitials in Th, ThC and ThN. We calculate charge transfers and lattice distortions due to these incorporations as well as migration paths and energies involved in the diffusion of Pa.