• Title/Summary/Keyword: vAm

Search Result 303, Processing Time 0.028 seconds

Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes

  • Woo, Joo Han;Nam, Da Yeong;Kim, Hyun Jong;Hong, Phan Thi Lam;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.87-94
    • /
    • 2021
  • Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.

Design of lattice structure for controlling elastic modulus in metal additive manufacturing (금속 적층제조에서의 격자구조 설계변수에 따른 탄성계수 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.276-281
    • /
    • 2023
  • With the high design freedom of the additive manufacturing process, there is a growing interest in multi-dimensional lattice structures among researchers, who are studying intricate structural modeling that is challenging to produce using conventional manufacturing processes. In the case of titanium alloy implants for human insertion, a multi-dimensional lattice structure is employed to ensure compatibility with bones, adjusting strength and elastic modulus to levels similar to those of bones. Therefore, securing a database on the mechanical properties based on lattice structure design variables and the development of related simulation techniques are believed to efficiently facilitate the customization of implants. In this study, lattice structures were additively manufactured using Ti-6Al-4V alloy, and the elastic modulus was measured based on design parameters. The results were compared with simulations, and an approach to finite element analysis for accurate prediction of the elastic modulus was proposed.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Quantitative Analysis of Vitamin B5 and B6 Using High Performance Liquid Chromatography (고속액체크로마토그래피를 이용한 비타민 B5 및 B6의 정량 분석)

  • Kim, Gi-Ppeum;Hwang, Young-Sun;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1186-1194
    • /
    • 2017
  • Recently, many people have demanded reliable nutritional data even for minor-components. On the other hand, an analytical method for the analyses of vitamin $B_5$ and $B_6$ is lacking. Therefore, this study attempted to validate with accuracy and precision the analysis of vitamin $B_5$ and $B_6$ using a high-performance liquid chromatography (HPLC) method. The vitamin $B_5$ and $B_6$ contents were analyzed using an Agilent 1260 series HPLC system. YMC-Pack ODS-AM ($250{\times}4.6mm$ I.D.) and YMC-Pack Pro RS $C_{18}$ ($250{\times}4.6mm$ I.D.) columns were used for the analyses of vitamin $B_5$ and $B_6$, respectively. In the case of vitamin $B_5$, the flow rate was set to 1.0 mL/min by isocratic elution using the 50 mM $KH_2PO_4$ solution (pH 3.5)/acetonitrile (ACN) (95:5, v/v) with monitoring at 200 nm using HPLC/DAD, whereas the flow rate for vitamin $B_6$ was set to 1.0 mL/min of flow rate by isocratic elution using a 20 mM $CH_3CO_2Na$ solution (pH 3.6)/ACN (97:3, v/v) with monitoring by excitation at 290 nm and emission at 396 nm using HPLC/FLD. The column temperature was set to $30^{\circ}C$. The injection volume was $20{\mu}L$ for each experiment. The specificity of the accuracy and precision for vitamin $B_5$ and $B_6$ were also validated by HPLC. The results showed high linearity in the calibration curve for vitamin $B_5$ ($R^2=0.9998^{{\ast}{\ast}}$), the limit of detection (LOD) and limit of quantitation (LOQ) were 0.4 mg/L and 1.3 mg/L, respectively, In contrast, for the calibration curve of vitamin $B_6$, which showed high linearity ($R^2=0.9999^{{\ast}{\ast}}$), the LOD and LOQ were 0.006 mg/L and 0.02 mg/L, respectively.

Development of Spray Thin Film Coating Method using an Air Pressure and Electrostatic Force (공압과 정전기력을 이용한 스프레이 박막 코팅 기술 개발)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.567-572
    • /
    • 2013
  • In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

A Study on HL7 Communication Method for Acquisition of real-time Medical Data in Smart health-care Environment (스마트 케어 환경에서 실시간 의료데이터 획득을 위한 HL7 전송 방법에 대한 연구)

  • Jeon, Jae-Hwan;Kang, Sung-In;Kim, Gwan-Hyung;Choi, Sung-Wook;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.799-802
    • /
    • 2012
  • 본 논문은 기존의 헬스케어 서비스의 한계를 극복하기 위해 최근 대두되고 있는 스마트 헬스케어 서비스(smart healthcare service)에 관한 연구이다. 스마트 헬스케어는 스마트폰의 기능에 맞추어 기초체력 운동 지수, 섭취 칼로리, 심박 체크 등의 다양한 서비스를 제공할 수 있지만, 최근에는 보건의료서비스에 특화시켜 환자와 의사가 직 간접적으로 진료를 할 수 있게끔 하는 스마트폰 환경에서의 원격진료 서비스가 부각되고 있다. 그러나 헬스케어를 위한 HL7 CDA 표준의 문서 교환방식은 실시간 데이터 획득을 요구하는 원격진료 서비스 환경에 적합하지 못하다. 이에 본 논문에서는 HL7v2.x의 트리거 이벤트를 통한 메시지 전송방식과 HL7 CDA RIM(Reference Information Model)을 응용하는 실시간 HL7 의료정보 전송 방안을 제안한다.

  • PDF

In Situ Transmission Electron Microscopy Study on the Reaction Kinetics of the Ni/Zr-interlayer/Ge System

  • Lee, Jae-Wook;Bae, Jee-Hwan;Kim, Tae-Hoon;Shin, Keesam;Lee, Je-Hyun;Song, Jung-Il;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.16-22
    • /
    • 2015
  • The reaction kinetics of the growth of Ni germanide in the Ni/Zr-interlayer/Ge system was investigated using isothermal in situ annealing at three different temperatures in a transmission electron microscope. The growth rate of Ni germanide in the Ni/Zr-interlayer/Ge system was determined to be diffusion controlled and depended on the square root of the time, with the activation energy of $1.04P{\pm}0.04eV$. For the Ni/Zr-interlayer/Ge system, no intermediate or intermixing layer between the Zr-interlayer and Ge substrate was formed, and thus the Ni germanide was formed and grew uniformly due to Ni diffusion through the diffusion path created in the amorphous Zr-interlayer during the annealing process in the absence of any intermetallic compounds. The reaction kinetics in the Ni/Zr-interlayer/Ge system was affected only by the Zr-interlayer.

Fabrication of ITO-Free organic photovoltaic cells by ink-jet printing (잉크젯 기법을 이용한 ITO-Free 유기태양전지 제작)

  • Lee, Ue-Jin;Yoon, Jong-Jin;Kim, Seung-Taek;Cho, Young-June;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1714-1715
    • /
    • 2011
  • In this work, highly conductive organic solvent-based polyaniline(PANI) was used as an anode in organic photovoltaic cells (OPV) based on poly - (3-hexylthiophene) and [6,6] - phenyl - C60 - butyricacid methyl ester (P3HT : PCBM). The transmittance of the used PANI film were 87.67% and 86.57% at 550nm, and its sheet resistance were 454 ${\Omega}/{\Box}$ and 298 ${\Omega}/{\Box}$. We fabricated ITO-free OPV cells using PANI as an anode, which exhibited an external power conversion efficiency of 2.28% with a result of Jsc of 6.922mA/cm2, Voc of 0.6093V, and FF of 54.10% under an illumination of air mass(AM) 1.5G (100mW/$cm^2$). We used ink-jet printing to deposit buffer layer and active layer on a glass substrate.

  • PDF

Employing Laccase-Producing Aspergillus sydowii NYKA 510 as a Cathodic Biocatalyst in Self-Sufficient Lighting Microbial Fuel Cell

  • Abdallah, Yomna K.;Estevez, Alberto T.;Tantawy, Diaa El Deen M.;Ibraheem, Ahmad M.;Khalil, Neveen M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1861-1872
    • /
    • 2019
  • In the present work, we isolated and identified Aspergillus sydowii NYKA 510 as the most potent laccase producer. Its medium constituents were optimized to produce the highest possible amount of laccase, which was after 7 days at 31℃ and pH 5.2. Banana peel and peptone excelled in inducing laccase production at concentrations of 15.1 and 2.60 g/l, respectively. Addition of copper sulfate elevated enzyme yield to 145%. The fungus was employed in a microbial fuel cell (MFC). The best performance was obtained at 2000 Ω achieving 0.76 V, 380 mAm-2, 160 mWm-2, and 0.4 W. A project to design a self-sufficient lighting unit was implemented by employing a system of 2 sets of 4 MFCs each, connected in series, for electricity generation. A scanning electron microscopy image of A. sydowii NYKA 510 was utilized in algorithmic form generation equations for the design. The mixed patterning and patterned customized mass approach were developed by the authors and chosen for application in the design.

가속기질량분석기술(加速器質量分析技術)(AMS)의 원리(原理) 및 응용(應用)

  • Park, Geung-Sik;U, Jeong-Ju
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.1069-1084
    • /
    • 1994
  • 수 MV급 탄뎀형 가속기와 정전형, 자장형 질량분석기를 결합함으로써 존재비가 극히 작은 동위원소 측정이 가능해진다. 수 MeV로 가속이 되면 분해에 방해가 되는 모든 분자이온들이 제거되며, 탄뎀형 가속기에서는 음이온으로부터 가속이 개시되므로 몇몇 음이온을 형성하지 못하는 동중원소의 간섭으로부터 자유로워지기 때문에 고감도분석이 실현될 수 있다. 이외에 음이온을 형성하는 동중원소들은 주로 이온함인 최종 검출기에서의 유효 전하에 따른 에너지손실 차이를 이용하여 효과적으로 제거할 수 있다. 현재는 주로 장반감기 방사성동위원소인 $^{10}Be$, $^{14}C$, $^{26}Al$, $^{36}Cl$$^{129}I$ 등의 측정법이 확립되어 천연시료 중에서 동위원소 존재비 $10^{-12}$에서 $10^{-15}$까지의 정량이 가능하며, 원자수로 환산한 검출하한을 $10^5$개가 된다. 또한 해당 원소를 기준으로 소요 시료량은 대부분 mg 정도로 충분하다. 지금까지는 불가능했던 이러한 특징으로 인해 지난 수년간 AMS(Accelerator Mass Spectrometry)가 활용되어 온 연구분야는 지구과학(기후학, 우주화학, 빙하학, 수문학, 해양학, 퇴적학, 화산학 및 광물탐사), 인류 및 고고학(연대측정), 그리고 물리학(천체물리, 핵 및 입자물리) 등으로 다양하다. 이외에 생의학 및 재료과학 분야에서도 AMS를 활용하고자 하는 노력이 계속되고 있다. 본 해설에서는 가속기질량분석기술의 특징, 원리, 장치 및 활용분야 등을 소개하고자 하며, 이로써 관련 분야의 연구 활성화에 기여하고자 한다.

  • PDF