• Title/Summary/Keyword: v-myc

Search Result 18, Processing Time 0.023 seconds

An Experimental Study on the Effect of Low Level Laser and Some Cytokines on Gene Expression of Human Gingival Fibroblasts (저출력레이저조사와 염증성 자극물질이 치은섬유아세포의 유전자 발현에 미치는 영향에 관한 실험적 연구)

  • Jung-Min Kim;Keum-Back Shin
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.2
    • /
    • pp.57-71
    • /
    • 1994
  • Gingival fibroblasts were cultured and subjected to the test of Northern blot analysis for the demonstration of various mRNA expression in response to the low level laser treatment. For duplication of in vivo. Wound healing process, fibroblasts were pretreated with proinflammatory cytokine interleukin-1$\beta$(IL-1$\beta$) or mitogenic substance phorbol 12-myristate 13-acetate(PMA) prior to laser irradiation. The results were as follows : 1. By the laser irradiation, the gene expression of collagen type I was markedly increased I n gingival fibroblasts, especially in the case of PMA pretreatment. The gene expression of collagen type IV, however, was not only affected by laser irradiation but also by chemical cell stimulation. 2. Oncogene v-myc expression was affected by both laser irradiation and IL-1$\beta$ or PMA stimulation, But v-fos gene expression was not detected in any case of this experimental system. 3. Heat shock gene(Hsp 70)was expressed constiutively, but slightly increased by laser irradiation. 4. mRNA of fibroblast growth factor(FGF) was induced by both laser irradiation and IL-1$\beta$ or PMA treatment.

  • PDF

Biochemical Characterization of Heterologously Expressed Chitinase 1 (Chi1) from an Inky Cap, Coprinellus congregatus (이형 재조합한 먹물버섯 Coprinellus congregatus Chitinase 1 (Chi1)의 발현과 생화학적 특성 분석)

  • Yoo, Yeeun;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.309-312
    • /
    • 2013
  • Fungal cell walls consist of various glucans and chitin. Fungi produce chitinases for their growth and development. The inky cap, Coprinellus congregatus, produces at least two different chitinases during its life cycle. Chitinase 1 (chi1) is expresses throughout its life cycle while chitinase 2 (chi2) is expressed at the mushroom autolysing phase. The cloned cDNA of chi1 is successfully expressed as a fusion protein with c-myc in Pichia pastoris, and purified by the affinity chromatography. The optimum pH and temperature of Chi1 was pH 8.0 and $35^{\circ}C$, respectively when 4-nitrophenyl N,N',N"-triacetyl-${\beta}$-D-chitotrioside was used as the substrate. The $K_m$ value and $V_{max}$ for the substrate was 0.780 mM and 0.10 OD $min^{-1}unit^{-1}$, respectively. The addition of purified Chi1 resulted in total growth inhibition against several plant pathogenic fungi such as Alternaria alternata, Fusarium graminearum and Trichoderma harzianum at the concentration of 60 ${\mu}g/ml$.

Identification of Differentially Expressed Genes in Murine Hippocampus by Modulation of Nitric Oxide in Kainic Acid-induced Neurotoxic Animal Model

  • Suh, Yo-Ahn;Kwon, O-Min;Yim, So-Young;Lee, Hee-Jae;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2007
  • Kainic acid (KA) causes neurodegeneration, but no consensus has been reached concerning its mechanism. Nitric oxide may be a regulator of the mechanism. We identified differentially expressed genes in the hippocampus of mice treated with kainic acid, together with or without L-NAME, a nonselective nitric oxide synthase inhibitor, using a new differential display PCR method based on annealing control primers. Eight genes were identified, including clathrin light polypeptide, TATA element modulatory factor 1, neurexin III, ND4, ATPase, $H^+$ transporting, V1 subunit E isoform 1, and N-myc downstream regulated gene 2. Although the functions of these genes and their products remain to be determined, their identification provides insight into the molecular mechanism(s) involved in KA-induced neuronal cell death in the hippocampal CA3 area.

Weighted Gene Co-expression Network Analysis in Identification of Endometrial Cancer Prognosis Markers

  • Zhu, Xiao-Lu;Ai, Zhi-Hong;Wang, Juan;Xu, Yan-Li;Teng, Yin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4607-4611
    • /
    • 2012
  • Objective: Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. Methods: The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. Results: Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. Conclusions: These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.

Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells (K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자)

  • Yang Kwang Mo;Youn Seon-Min;Jeong Soo-Jin;Jang Ji-Yeon;Jo Wol-Soom;Do Chang-Ho;Yoo Y대-Jin;Shin Young-Cheol;Lee Hyung Sik;Hur Won Joo;Lim Young-Jin;Jeong Min-Ho
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2003
  • Purpose: The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A (HWA) coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosils on $p210^{bcr/abl}$ protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the Induction on a number of transcription factors and the differential gene expression in this model were investigated. Materials and Methids: K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 Mev Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with $0.25/muM$ of HMA and $25/muM$ of genistein, and the expressions and the activities of abl kinase, MAPK family, NF- kB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. Results: The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either in association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF- kB activity and the TK1 expression and activity. Conclusion: The effects of HMA and genistein on the radiosensitivity on the K562 cells were not related to the bcr-abl kinase activity in this study, another signaling pathway, besides the WAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the optional radiosensitization or radioprotection.

Luteolin Induced-growth Inhibition and Apoptosis of Human Esophageal Squamous Carcinoma Cell Line Eca109 Cells in vitro

  • Wang, Ting-Ting;Wang, Shao-Kang;Huang, Gui-Ling;Sun, Gui-Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5455-5461
    • /
    • 2012
  • Luteolin is a plant flavonoid which exhibits anti-oxidative, anti-inflammatory and anti-tumor effects. However, the antiproliferative potential of luteolin is not fully understood. In this study, we investigated the effect of luteolin on cell cycling and apoptosis in human esophageal squamous carcinoma cell line Eca109 cells. MTT assays showed that luteolin had obvious cytotoxicity on Eca109 with an $IC_{50}$ of $70.7{\pm}1.72{\mu}M$ at 24h. Luteolin arrested cell cycle progression in the G0/G1 phase and prevented entry into S phase in a dose- and time-dependent manner. as assessed by FCM. Luteolin induced apoptosis of Eca109 cells was demonstrated by AO/EB staining assay and annexin V-FITC/PI staining. Moreover, luteolin downregulated the expression of cyclin D1, survivin and c-myc, and it also upregulated the expression of p53, in line with the fact that luteolin was able to inhibit Eca109 cell proliferation.

Reovirus and Tumor Oncolysis

  • Kim, Man-Bok;Chung, Young-Hwa;Johnston, Randal N.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.187-192
    • /
    • 2007
  • REOviruses (Respiratory Enteric Orphan viruses) are ubiquitous, non-enveloped viruses containing 10 segments of double-stranded RNA (dsRNA) as their genome. They are common isolates of the respiratory and gastrointestinal tract of humans but are not associated with severe disease and are therefore considered relatively benign. An intriguing characteristic of reovirus is its innate oncolytic potential, which is linked to the transformed state of the cell. When immortalized cells are transfected in vitro with activated oncogenes such as Ras, Sos, v-erbB, or c-myc, they became susceptible to reovirus infection and subsequent cellular lysis, indicating that oncogene signaling pathways are exploited by reovirus. This observation has led to the use of the virus in clinical trials as an anti-cancer agent against oncogenic tumors. In addition to the exploitation of oncogene signaling, reovirus may further utilize host immune responses to enhance its antitumor activity in vivo due to its innate interferon induction ability. Reovirus is, however, not entirely benign to immunocompromised animal models. Reovirus causes so-called "black feet syndrome" in immunodeficient mice and can also harm neonatal animals. Because cancer patients often undergo immunosuppression due to heavy chemo/radiation-treatments or advanced tumor progression, this pathogenic response may be a hurdle in virus-based anticancer therapies. However, a genetically attenuated reovirus variant derived from persistent reovirus infection of cells in vitro is able to exert potent anti-tumor activity with significantly reduced viral pathogenesis in immunocompromised animals. Importantly, in this instance the attenuated, reovirus maintains its oncolytic potential while significantly reducing viral pathogenesis in vivo.

Expression of Sodium/iodide Symporter Transgene in Neural Stem Cells (신경줄기세포(HB1.F3)에서 나트륨옥소 공동수송체 도입유전자 발현)

  • Kim, Yun-Hui;Lee, Dong-Soo;Kang, Joo-Hyun;Lee, Yong-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2004
  • Purpose: The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. Materials and Methods: F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (Internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. Results: The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to $20{\mu}M$, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. Conclusion: These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene ex[ressopm of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions.