• 제목/요약/키워드: utrasonic wave generator

검색결과 2건 처리시간 0.014초

초음파 이송 시스템에서 Flexural Beam의 형태 변화와 물체 이송과의 관계에 대한 연구 (A Study on the Relationship between Flexural Beam Shape and Transport Characteristics for the Ultrasonic Transport Systems)

  • 정상화;신병수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.25-29
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave generators are performed. The relationship of transporting speed according to the change of flexural beam shape is verified and the system performance for practical use is evaluated.

  • PDF

초음파에 의해서 가진되어지는 Flexural Beam의 동특성에 관한 연구 (A study on the dynamic characteristics of exciting Flexural beam by ultrasonic wave)

  • 정상화;신상문;김광호;이상희;김주환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.792-796
    • /
    • 2006
  • In recent years, the semiconductor industry and the optical industry is developed rapidly. The recent demand has expanded for optical components such as a optical lens, a optical semiconductor and a measuring instrument. Object transport systems are driven typically by the magnetic field and the conveyer belt. Recent industry requires more faster and efficient transport system. However, conventional transport systems are not adequate for transportation of optical elements and semiconductors. Because conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. This transport system is using 2-mode ultrasonic wave excitation and flexural beam modes shapes are evaluated. It compared simulation results with experimental results

  • PDF