• Title/Summary/Keyword: user location and tracking

Search Result 142, Processing Time 0.028 seconds

Constructing the Forest Fire Extinguishment Helicopter Management System by Integrating GPS and GIS (GPS와 GIS를 통합한 산불진화 헬기 관리시스템 구축)

  • Jo, Myung-Hee;Kim, Joon-Bum;Jo, Yun-Won;Shin, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.48-58
    • /
    • 2003
  • Recently in order to extinguish the large scale of forest fire efficiently and rapidly the forest fire extinguishment equipment such as helicopters and vehicles has been mobilized. In this situation, the most consideration for the effective extinguishment is to understand the forest fire surrounding area and situation very well and arrange and manage the extinguishment equipment timely. In this paper, the client/serve-based forest fire extinguishment helicopter management system was constructed by integrating GPS(global positioning system) and GIS(geographic information system) technologies. This system manages and considers not only extinguishment equipment information such as helicopters and vehicles including manpower arrangement but also extinguishment environment information such as storing reservoir status and road situation and so on. For this, the real time tracking of helicopter location was first acquired through GPS technology then all the information about forest fire surrounding area was offered through the user-friendly interface of GIS concept. The result of constructing this system helps to extinguish a large scale of forest fire rapidly and effectively within shorter time then reduces physical damage and much manpower mobilization.

  • PDF

Implementation of High Efficiency Generators Applicable to Climbing Sticks (등산스틱에 적용 가능한 고효율 발전기 구현)

  • Gul-Won Bang
    • Journal of Industrial Convergence
    • /
    • v.22 no.7
    • /
    • pp.15-21
    • /
    • 2024
  • A hiking stick is generally one of the walking aids that allow hikers to walk while relying on their own bodies when walking. A rechargeable battery must be built into the hiking stick, which is an auxiliary device, in order to perform various functions. A separate power supply is required to charge the rechargeable battery. This study is about a self-generated power supply and develops a power generation device using a screw with higher power generation efficiency than the existing method. It is differentiated from the method suggested in this study by comparing and analyzing it with the existing power generation method, and identifying problems therewith. The screw-type power generation device generates power when the climbing stick comes into contact with the ground and when it is separated from the ground. The built-in power generation device does not require a separate power supply, and it can be used by attaching the role of a mobile phone auxiliary battery and a lighting lamp, and it has the effect of being able to find it through location tracking by embedding a GPS sensor, etc., and using lighting to keep the user safe in emergency situations such as distress. The existing generator with built-in mountain climbing stick is difficult to charge due to very weak current and low practicality, but the generator developed in this research could achieve high efficiency to obtain a sufficient current, so it is possible to charge a battery and practicality.