• Title/Summary/Keyword: useful lifetime

Search Result 144, Processing Time 0.025 seconds

Reliability-Centered Maintenance Model for Maintenance of Electric Power Distribution System Equipment (배전계통 기기 유지보수를 위한 RCM 모델)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.410-415
    • /
    • 2009
  • With the implementation of electric power industry reform, the utilities are looking for effective ways to improve the economic efficiency. One area in particular, the equipment maintenance, is being scrutinized for reducing costs while keeping a reasonable level of the reliability in the overall system. Here the conventional RCM requires the tradeoff between the upfront maintenance costs and the potential costs of losing loads. In this paper we describe the issues related to applying so-called the "Reliability-centered Maintenance" (RCM) method in managing electric power distribution equipment. The RCM method is especially useful as it explicitly incorporates the cost-tradeoff of interest, i.e. the upfront maintenance costs and the potential interruption costs, in determining which equipment to be maintained and how often. In comparison, the "Time-based Maintenance" (TBM) method, the traditional method widely used, only takes the lifetime of equipment into consideration. In this paper, the modified Markov model for maintenance is developed. First, the existing Markov model for maintenance is explained and analyzed about transformer and circuit breaker, so on. Second, developed model is introduced and described. This model has two different points compared with existing model: TVFR and nonlinear customer interruption cost (CIC). That is, normal stage at the middle of bathtub curve has not CFR but the gradual increasing failure rate and the unit cost of CIC is increasing as the interruption time is increasing. The results of case studies represent the optimal maintenance interval to maintain the equipment with minimum costs. A numerical example is presented for illustration purposes.

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

Interrelation of the Diamond Disk and pad PCR in the CMP Process (CMP 공정에서 Diamond Disk와 Pad PCR 상관관계 연구)

  • Yun, Young-Eun;No, Yong-Han;Yoon, Bo-Earn;Bae, Sung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.359-361
    • /
    • 2006
  • As circuits become increasingly complex and devices sizes shrinks, the demands placed on global planarization of higher level. Chemical Mechanical Polishing (CMP) is an indispensable manufacturing process used to achieve global planarity. In the CMP process, Diamond Disk (DD) plays an important role in the maintenance of removal rate. According to studies, the cause of removal rate decrease in the early or end stage of diamond disk lifetime comes from pad surface change. We also presented pad cutting rate (PCR) as a useful cutting ability index of DD and studied PCR trend about variable parameters that including size, hardness, shape of DD and RPM, pressure of conditioner It has been shown that PCR control ability of pressure and shape is superior to RPM and size. High pressure leads to a decrease of cell open ratio of pad surface because polyurethane of pad is destroyed by pressure. So low pressure high RPM condition is a proper removal rate sustain. By examining correlations between RPM and pressure of conditioner, it has been shown that PCR safe zoneto satisfy proper removal rate has the range 0.06mm/hr to 0.12mm/hr.

  • PDF

Life Time Prediction of Rubber Gasket for Fuel Cell through Its Acid-Aging Characteristics

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Jin-Kuk;Kim, Seok-Jin
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.315-323
    • /
    • 2007
  • The present manuscript deals with the prediction of the lifetime of NBR compound based rubber gaskets for use as fuel cells. The material was investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing $H_2SO_4$ concentrations of 5, 6, 7 and 10 vol%. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. To investigate the effects of acid-heat aging on the performance characteristics of the gaskets, the properties of the NBR rubber, such as crosslink density and elongation at break, were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both $120\;and\;140^{\circ}C$, but at $160^{\circ}C$, the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increases in both the $H_2SO_4$ concentration & temperature. The observed experimental results were evaluated using the Arrhenius equation.

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

A Study on the Damage Estimation of Uni-directionally Oriented Carbon Fiber Reinforced Plastics using Acoustic Emission (음향방출을 이용한 일방향 탄소섬유강화 플라스틱의 손상평가에 관한 연구)

  • Rhee Zhang-Kyu;Park Sung-Oan;Kim Bong-Gag;Woo Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.30-36
    • /
    • 2005
  • This study is to investigate a damage estimation of single edge notched tensile specimens as a function of acoustic emission(AE) according to the uni-directionally oriented carbon fiber/epoxy composites, CFRP In fiber reinforced composite materials, AE signals due to several types of failure mechanisms are typically observed. These are due to fiber breakage, fiber pull-out matrix cracking, delamination, and splitting or fiber bundle breaking. And these are usually discriminated on the basis of amplitude distribution, event counts, and energy related parameters. In this case, AE signals were analyzed and classified 3 regions by AE event counts, energy and amplitude for corresponding applied load. Bath-tub curve shows 3 distinct periods during the lifetime of a single-edge-notch(SEN) specimen. The characterization of AE generated from CFRP during SEN tensile test is becoming an useful tool f3r the prediction of damage failure or/and failure mode analysis.

Development of 600-MHz 19F-7Li Solid-State NMR Probe for In-Situ Analysis of Lithium Ion Batteries

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3253-3256
    • /
    • 2013
  • Lithium is a highly attractive material for high-energy-concentration batteries, since it has low weight and high potential. Rechargeable lithium-ion batteries (LIBs), which have the extremely high gravimetric and volumetric energy densities, are currently the most preferable power sources for future electric vehicles and various portable electronic devices. In order to improve the efficiency and lifetime, new electrode compounds for lithium intercalation or insertion have been investigated for rechargeable batteries. Solid-state nuclear magnetic resonance (NMR) is a very useful tool to investigate the structural changes in electrode materials in actual working lithium-ion batteries. To detect the in-situ microstructural changes of electrode and electrolyte materials, $^7Li-^{19}F$ double-resonance solid-state NMR probe with a static solenoidal coil for a 600-MHz narrow-bore magnet was designed, constructed, and tested successfully.

Evaluation of Creep-Fatigue Damage of KALIMER Reactor Internals Using the Elastic Analysis Method in RCC-MR

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.566-584
    • /
    • 2001
  • In this paper, the progressive deformation and the creep-fatigue damage for the conceptually designed reactor internals of KALIMER(Korea Advanced Liquid MEtal Reactor) are carried out by using the elastic analysis method in the RCC-MR code for normal operating conditions including the thermal load, seismic load (OBE) and dead weight. The maximum operating temperature of this reactor is 53$0^{\circ}C$ and the total service lifetime is 30 years. Thus, the time- dependent creep and stress-rupture effects become quite important in the structural design. The effects of the thermal induced membrane stress on the creep-fatigue damage are investigated with the risk of the elastic follow-up. To calculate the thermal stress, detailed thermal analyses considering conduction, convection and radiation heat transfer mechanisms are carried out with the ANSYS program. Using the results of the elastic analysis, the progressive deformation and creep-fatigue damages are calculated step by step using the RCC-MR in detail. This paper ill be a very useful guide for an actual application of the high temperature structural design of the nuclear power plant accounting for the time-dependent creep and stress-rupture effects.

  • PDF

$Pr^{3+}-and$ $Pr^{3+}/Er^{3+}$-Doped Selenide Glasses for Potential $1.6{\mu}m$ Optical Amplifier Materials

  • Choi, Yong-Gyu;Park, Bong-Je;Kim, Kyong-Hon;Heo, Jong
    • ETRI Journal
    • /
    • v.23 no.3
    • /
    • pp.97-105
    • /
    • 2001
  • $1.6\;{\mu}m$ emission originated from $Pr^{3+}:\;(^3F_3,\;^3F_4)\;{\longrightarrow}\;^3H_4$ transition in $Pr^{3+}-\;and\;Pr^{3+}/Er^{3+}$-doped selenide glasses was investigated under an optical pump of a conventional 1480 nm laser diode. The measured peak wavelength and fullwidth at half-maximum of the fluorescent emission are ~1650nm and 120nm, respectively. A moderate lifetime of the thermally coupled upper manifolds of ${\sim}212{\pm}10{\mu}s$ together with a high stimulated emission cross-section of ${\sim}(3{\pm}1){\times}10^{-20}\;cm^2$ promises to be useful for $1.6{\mu}m$ band fiber-optic amplifiers that can be pumped with an existing high-power 1480 nm laser diode. Codoping $Er^{3+}$ enhances the emission intensity by way of a nonradiative $Er^{3+}:\;^4I_{13/2}\;{\longrightarrow}\;Pr^{3+}:\;(^3F_3,\;^3F_4)$ energy transfer. The Dexter model based on the spectral overlap between donor emission and acceptor absorption describes well the energy transfer from $Er^{3+}$ to $Pr^{3+}$ in these glasses. Also discussed in this paper are major transmission loss mechanisms of a selenide glass optical fiber.

  • PDF

Determination of Glutamine Utilizing New Plant Tissue Bio-Sensor (새로운 식물조직 바이오센서에 의한 글루타민의 정량)

  • Ihn, Gwon Shik;Kim, Bong Won;Jeon, Yeong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.622-628
    • /
    • 1990
  • The bio-sensor for glutamine has been constructed by immobilizing petal of the rose structural elements on an ammonia gas sensor. This sensor was investigated for the effects of pH, temperature, buffer solution, tissular amounts, interferences and lifetime. As a result, the tissue sensor showed linear range of $8.0 {\times} 10^{-4}$$5.0 {\times} 10^{-2}$ M glutamine with a slope of 52 mV/decade in pH 7.8, 0.2M phosphate beffer solution at 37$^{\circ}C$. The tissular amounts used for this sensor was 50 mg. This sensorr showed excellent selectivity. This sensor was compared with other structural elements of rose. Actually, this tissue sensor appeared to be very useful for the determination of glutamine.

  • PDF