• 제목/요약/키워드: use of the Internet

검색결과 5,999건 처리시간 0.034초

키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법 (A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model)

  • 조원진;노상규;윤지영;박진수
    • Asia pacific journal of information systems
    • /
    • 제21권1호
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.

시맨틱 웹 기술혁신의 채택과 확산: 질적연구접근법 (The Adoption and Diffusion of Semantic Web Technology Innovation: Qualitative Research Approach)

  • 주재훈
    • Asia pacific journal of information systems
    • /
    • 제19권1호
    • /
    • pp.33-62
    • /
    • 2009
  • Internet computing is a disruptive IT innovation. Semantic Web can be considered as an IT innovation because the Semantic Web technology possesses the potential to reduce information overload and enable semantic integration, using capabilities such as semantics and machine-processability. How should organizations adopt the Semantic Web? What factors affect the adoption and diffusion of Semantic Web innovation? Most studies on adoption and diffusion of innovation use empirical analysis as a quantitative research methodology in the post-implementation stage. There is criticism that the positivist requiring theoretical rigor can sacrifice relevance to practice. Rapid advances in technology require studies relevant to practice. In particular, it is realistically impossible to conduct quantitative approach for factors affecting adoption of the Semantic Web because the Semantic Web is in its infancy. However, in an early stage of introduction of the Semantic Web, it is necessary to give a model and some guidelines and for adoption and diffusion of the technology innovation to practitioners and researchers. Thus, the purpose of this study is to present a model of adoption and diffusion of the Semantic Web and to offer propositions as guidelines for successful adoption through a qualitative research method including multiple case studies and in-depth interviews. The researcher conducted interviews with 15 people based on face-to face and 2 interviews by telephone and e-mail to collect data to saturate the categories. Nine interviews including 2 telephone interviews were from nine user organizations adopting the technology innovation and the others were from three supply organizations. Semi-structured interviews were used to collect data. The interviews were recorded on digital voice recorder memory and subsequently transcribed verbatim. 196 pages of transcripts were obtained from about 12 hours interviews. Triangulation of evidence was achieved by examining each organization website and various documents, such as brochures and white papers. The researcher read the transcripts several times and underlined core words, phrases, or sentences. Then, data analysis used the procedure of open coding, in which the researcher forms initial categories of information about the phenomenon being studied by segmenting information. QSR NVivo version 8.0 was used to categorize sentences including similar concepts. 47 categories derived from interview data were grouped into 21 categories from which six factors were named. Five factors affecting adoption of the Semantic Web were identified. The first factor is demand pull including requirements for improving search and integration services of the existing systems and for creating new services. Second, environmental conduciveness, reference models, uncertainty, technology maturity, potential business value, government sponsorship programs, promising prospects for technology demand, complexity and trialability affect the adoption of the Semantic Web from the perspective of technology push. Third, absorptive capacity is an important role of the adoption. Fourth, suppler's competence includes communication with and training for users, and absorptive capacity of supply organization. Fifth, over-expectance which results in the gap between user's expectation level and perceived benefits has a negative impact on the adoption of the Semantic Web. Finally, the factor including critical mass of ontology, budget. visible effects is identified as a determinant affecting routinization and infusion. The researcher suggested a model of adoption and diffusion of the Semantic Web, representing relationships between six factors and adoption/diffusion as dependent variables. Six propositions are derived from the adoption/diffusion model to offer some guidelines to practitioners and a research model to further studies. Proposition 1 : Demand pull has an influence on the adoption of the Semantic Web. Proposition 1-1 : The stronger the degree of requirements for improving existing services, the more successfully the Semantic Web is adopted. Proposition 1-2 : The stronger the degree of requirements for new services, the more successfully the Semantic Web is adopted. Proposition 2 : Technology push has an influence on the adoption of the Semantic Web. Proposition 2-1 : From the perceptive of user organizations, the technology push forces such as environmental conduciveness, reference models, potential business value, and government sponsorship programs have a positive impact on the adoption of the Semantic Web while uncertainty and lower technology maturity have a negative impact on its adoption. Proposition 2-2 : From the perceptive of suppliers, the technology push forces such as environmental conduciveness, reference models, potential business value, government sponsorship programs, and promising prospects for technology demand have a positive impact on the adoption of the Semantic Web while uncertainty, lower technology maturity, complexity and lower trialability have a negative impact on its adoption. Proposition 3 : The absorptive capacities such as organizational formal support systems, officer's or manager's competency analyzing technology characteristics, their passion or willingness, and top management support are positively associated with successful adoption of the Semantic Web innovation from the perceptive of user organizations. Proposition 4 : Supplier's competence has a positive impact on the absorptive capacities of user organizations and technology push forces. Proposition 5 : The greater the gap of expectation between users and suppliers, the later the Semantic Web is adopted. Proposition 6 : The post-adoption activities such as budget allocation, reaching critical mass, and sharing ontology to offer sustainable services are positively associated with successful routinization and infusion of the Semantic Web innovation from the perceptive of user organizations.

온라인 구전과 영화 매출 간 상호영향에 관한 연구: 한국 영화 산업을 중심으로 (Simultaneous Effect between eWOM and Revenues: Korea Movie Industry)

  • 배정호;심범준;김병도
    • Asia Marketing Journal
    • /
    • 제12권2호
    • /
    • pp.1-25
    • /
    • 2010
  • 기존 영화 산업에서 구전의 크기는 매출에 영향을 주지만 방향성은 영향을 주지 못하는 것으로 연구되었다(Liu 2006). 하지만, 이러한 분석 방법을 국내 영화 데이터에 동일하게 적용시켜 본 결과, 구전의 방향성도 영화의 매출에 영향을 주는 것으로 밝혀졌다. 이는 아시아 지역의 소비자들에게서 나타나는 독립적 자아관점과 북미 지역의 소비자들에게서 나타나는 상호의존적 자아관점의 차이로 인해 나타난 결과로 보인다. 즉, 국내 소비자의 경우는 영화를 선택/관람함에 있어 타인의 평가가 영향력을 주기 때문에 구전의 방향성도 유의한 양(+)의 값을 가진다. 기존의 연구에서는 구전의 크기가 일방적으로 매출에 영향을 미친다는 가정을 통해 영화 산업의 구전효과를 분석했으나, 이는 발생된 매출이 구전의 크기에 미치는 영향을 간과한 것이다. 따라서 매출이 구전에 미치는 효과까지 고려하여 연립방정식(Simultaneous Equation)을 통해 구전의 크기와 매출 간 상호 관계를 추정한 결과, 구전의 방향성은 위의 분석과 동일하게 영화 개봉 후 지속적으로 매출에 양(+)의 영향력을 미치는 것으로 나타났다. 하지만, 구전의 크기는 매출의 원인이 되는 것이 아니라, 오히려 매출이 증가하여 구전의 크기가 증가하는 것이라는 결과를 보여주었다. 즉, 개봉 후 1주차에는 소비자들이 영화를 선택할 때 구전의 크기와 방향성이 동시에 고려되지만, 2주차 이후로는 구전의 크기는 매출에 영향을 미치는 변수가 아니라, 매출의 증가에 따른 결과라는 사실이 밝혀졌다.

  • PDF

단일 카테고리 문서의 다중 카테고리 자동확장 방법론 (A Methodology for Automatic Multi-Categorization of Single-Categorized Documents)

  • 홍진성;김남규;이상원
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.77-92
    • /
    • 2014
  • 텍스트에 대한 사용자의 접근성을 향상시키기 위해, 이들 문서는 정해진 기준에 따라 카테고리로 분류되어 제공되고 있다. 과거에는 카테고리 분류 작업이 수작업으로 수행되었지만, 문서 작성자에게 분류를 맡기는 경우 분류 정확성을 보장할 수 없고 관리자가 모든 분류를 담당하는 경우 많은 시간과 비용이 소요된다는 어려움이 있었다. 이러한 한계를 극복하기 위해 카테고리를 자동으로 식별할 수 있는 문서 분류 기법에 대한 연구가 활발하게 수행되었다. 하지만 대부분의 문서 분류 기법은 각 문서가 하나의 카테고리에만 속하는 경우를 가정하고 있기 때문에, 하나의 문서가 다양한 주제를 갖는 실제 상황과 부합하지 않는다는 한계를 갖는다. 이를 보완하기 위해 최근 문서의 다중 카테고리 식별을 위한 연구가 일부 수행되었으나, 이들 연구는 대부분 이미 다중 카테고리가 부여되어 있는 문서에 대한 학습을 통해 분류 규칙을 생성하므로 단일 카테고리만 부여되어 있는 기존 문서의 다중 카테고리 식별에는 적용할 수 없다는 제약을 갖는다. 따라서 본 연구에서는 이러한 제약을 극복하기 위해, 카테고리, 토픽, 문서간 관계 분석을 통해 단일 카테고리를 갖는 문서로부터 추가 주제를 발굴하여 이를 다중 카테고리로 자동 확장시킬 수 있는 방법론을 제안하였다. 실험 결과 원 카테고리가 식별된 총 24,000건의 문서 중 23,089건에 대해 카테고리를 확장시킬 수 있었다. 또한 정확도 분석에서 카테고리의 특성에 따라 카테고리 분류 정확도가 상이하게 나타나는 현상을 발견하였다. 본 연구는 단일 카테고리로 분류된 문서에 대해 다중 카테고리를 추가로 식별하여 부여함으로써, 규칙 학습 과정에서 다중 카테고리가 부여된 문서를 필요로 하는 기존 다중 카테고리 문서 분류 알고리즘의 활용성을 매우 향상시킬 수 있을 것으로 기대한다.

정보보호 대책의 성능을 고려한 투자 포트폴리오의 게임 이론적 최적화 (Game Theoretic Optimization of Investment Portfolio Considering the Performance of Information Security Countermeasure)

  • 이상훈;김태성
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.37-50
    • /
    • 2020
  • 사물 인터넷, 빅데이터, 클라우드, 인공지능 등 다양한 정보통신기술이 발전하면서, 정보보호의 대상이 증가하고있다. 정보통신기술의 발전에 비례해서 정보보호의 필요성이 확대되고 있지만, 정보보호 투자에 대한 관심은 저조한 상황이다. 일반적으로 정보보호와 관련된 투자는 효과를 측정하기 어렵기 때문에 적절한 투자가 이루어지지 않고 있으며, 대부분의 조직은 투자 규모를 줄이고 있다. 또한 정보보호 대책의 종류와 특성이 다양하기 때문에 객관적인 비교와 평가가 힘들고, 객관적인 의사결정 방법이 부족한 실정이다. 하지만 조직의 발전을 위해서는 정보보호와 관련된 정책과 의사결정이 필수적이며 적정 수준의 투자와 이에 대한 투자 효과를 측정 할 필요가 있다. 이에 본 연구에서는 게임 이론을 이용하여 정보보호 대책 투자 포트폴리오를 구성하는 방법을 제안하고 선형계획법을 이용하여 최적 방어 확률을 도출한다. 2인 게임 모형을 이용하여 정보보호 담당자와 공격자를 게임의 경기자로 구성한 뒤, 정보보호 대책을 정보보호 담당자의 전략으로, 정보보호 위협을 공격자의 전략으로 각각 설정한다. 게임 모형은 경기자의 보수의 합이 0인 제로섬 게임을 가정하고, 여러개의 전략 사이에서 일정한 확률 분포에 따라 전략을 선택하는 혼합 전략 게임의 해를 도출한다. 여러 종류의 위협이 존재하는 현실에서는 한 개의 정보보호 대책만으로 일정 수준 이상의 방어가 힘들기 때문에, 다수의 정보보호 대책을 고려해야한다. 따라서 다수의 정보보호 위협에 따른 정보보호 대책이 배치된 환경에서 정보보호 대책의 방어 비율을 이용하여 정보보호 대책 투자 포트폴리오를 산출한다. 또한 최적화된 포트폴리오를 이용하여 방어 확률을 최대화하는 게임 값을 도출한다. 마지막으로 정보보호 대책의 실제 성능 데이터를 이용하여 수치 예제를 구성하고, 제안한 게임 모델을 적용하고 평가한다. 본 연구에서 제시한 최적화 모델을 이용하면 조직의 정보보호 담당자는 정보보호 대책의 방어 비율을 고려하여 정보보호 대책의 투자 가중치를 구할 수 있고, 효과적인 투자 포트폴리오를 구성하여 최적의 방어 확률을 도출 할 수 있을 것이다.

연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법 (A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.127-141
    • /
    • 2017
  • 인터넷과 모바일 관련 기술의 발전과 기기의 보급은 물리적 공간의 제약을 극복하게 하고, 다양한 상품과 서비스를 소비자에게 제공함으로써, 소비자에게 선택의 폭을 넓히는 기회를 제공하는 반면, 많은 시간과 노력을 기울이고도 소비자가 자신의 기호에 적합한 품목을 선택하기 힘들어지는 부작용을 낳았다. 이에 따라, 기업은 추천 시스템을 활용하여 소비자가 원하는 품목을 더 쉽게 찾는 수단을 제공하고 있다. 상품 간의 연관성을 통계적으로 분석하는 연관 규칙 마이닝 기법은 직관적인 형태의 척도를 규칙과 함께 제공함으로써, 이로부터 도출된 규칙에 포함된 품목 간의 관계를 이해하고, 이를 추천에 적용하기 쉽다는 강점을 갖는다. 그러나, 서로 다른 규칙의 척도가 일관되게 어느 한 쪽의 규칙이 더 우위에 있음을 알려주지 못한다면, 수많은 품목 중 추천에 적합한 품목을 적절히 선별해내기 힘든 상황이 발생한다. 본 연구에서는 추천 상품의 순위를 결정할 수 있도록 연관 규칙 마이닝 기법에 회귀분석모형을 보완적으로 적용하는 방안을 제시하고자 수행되었다. 연관 규칙 마이닝에서 보편적으로 사용되고 있는 지지도, 신뢰도, 향상도를 활용하여 모형을 구현함으로써, 직관적으로 이해하기 쉬울 뿐만 아니라, 실무에서도 활용하기 쉬운 방안을 제시하고자 하였다. 국내 최대규모의 온라인 쇼핑몰의 주문 데이터를 활용한 실험을 통해, 제안된 모형으로부터 얻어진 추천 점수를 기반으로 추천상품을 결정하고, 이를 추천에 적용함으로써 추천 적중률을 향상시킬 수 있음을 보였다. 특히, 최근 모바일 상거래가 빠르게 확산됨에 따라, 제한된 화면에 한정된 수의 추천 품목을 제시해야 하는 상황에서 적합한 추천 기법임을 확인할 수 있었다.

스마트카드 가상화(ViSCa) 플랫폼 기반 모바일 결제 서비스 제안 및 타 사례와의 비교분석 (Comparative Analysis of ViSCa Platform-based Mobile Payment Service with other Cases)

  • 이준엽;이경전
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.163-178
    • /
    • 2014
  • 본 연구는 스마트카드 가상화(ViSCa: Virtualization of Smart Cards) 플랫폼 기반의 모바일 결제 서비스를 제안하고 타 사례와 비교분석을 한다. 스마트카드 가상화 플랫폼 기반의 모바일 결제 서비스는 단말 가상화 기술을 이용하여 스마트카드 하드웨어를 가상화하고, 모바일 클라우드 기술을 통해 가상화된 스마트카드에 대한 통합 관리를 목표로 하는 Smart Cards as a Service (이하 SCaaS)이다. 스마트카드 가상화 플랫폼 기반 모바일 결제 서비스는 스마트카드를 가상화하여 클라우드에 저장한 후, 애플리케이션(이하 앱)을 통해 사용자 인증을 거쳐 모바일 클라우드에 저장된 스마트카드 중 한 가지를 선택하여 결제한다. 연구 범위 설정 및 사례 선정을 위해 선행연구에서 진행한 모바일 결제 서비스 분류 방식을 토대로 제안하는 서비스와 관련 있는 특징별, 서비스 유형별 그룹을 도출하였다. 공통적으로 기존 결제수단(신용카드) 정보를 모바일 기기에 저장하여 오프라인 매장에서 결제하는 특징을 지닌 것으로 나타났다. 도출된 그룹은 금융거래정보의 저장 위치에 따라 앱과 연결된 서버에 저장하는 '앱 방식'과 모바일 기기 내부의 보안요소(Secure Element, SE)에 금융거래정보가 담긴 IC(Integrated Circuit, 집적회로) 칩을 탑재하는 '모바일 카드 방식'으로, 2 가지 서비스 유형으로 나타낼 수 있다. 모바일 결제 서비스의 채택 요인 및 시장 환경 분석과 관련된 선행연구를 토대로 경제성, 범용성 보안성, 편리성, 응용성, 효율성, 총 6가지 비교분석을 위한 평가 요인을 도출하였으며, 스마트카드 가상화 플랫폼 기반 모바일 결제 서비스와 도출된 그룹에서 선정된 사례 5 가지를 비교 분석하였다.

2차원 바코드를 이용한 오디오 워터마킹 알고리즘 (A digital Audio Watermarking Algorithm using 2D Barcode)

  • 배경율
    • 지능정보연구
    • /
    • 제17권2호
    • /
    • pp.97-107
    • /
    • 2011
  • 본 논문에서는 2차원 바코드를 이용한 오디오 워터마킹 알고리즘을 제안하였다. 삽입되는 워터마크 정보로는 2차원 바코드인 QR 코드를 변형하여 이용하였다. 2차원 바코드가 1차원 바코드에 비하여 많은 정보를 표현할 수 있고, 코드자체가 에러 보정능력을 내재하고 있는 장점을 이용하여 워터마킹 알고리즘의 견고성을 높였다. 또한 부분적인 워터마크 정보의 손실에 대응하기 위하여 직교코드를 이용하여 삽입대역을 확산했으며, 삽입강도 0.7에서 50dB 이상의 우수한 품질을 확보할 수 있었다.

조경산업 관점에서 4차 산업혁명 기술의 탐색 (Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective)

  • 최자호;서주환
    • 한국조경학회지
    • /
    • 제47권2호
    • /
    • pp.59-75
    • /
    • 2019
  • 본 연구는 조경산업의 관점에서 4차 산업혁명 기술을 탐색하여, 선순환적 가치증대에 필요한 기초자료를 제공하고자 수행하였다. 4차 산업혁명, 조경산업과 도시재생의 특성 등을 고찰하고, 체계적 연구에 적합한 기술 분류 체계를 틀로 선정하는 등 방법론을 설정하여 연구하였다. 먼저, 조경산업의 선순환적 가치증대에 활용이 가능한 디지털 데이터 기반의 4차 산업혁명 기술을 선별하였다. '요소기술 수준'에서 '핵심기술'인 사물인터넷, 클라우드 컴퓨팅, 빅데이터, 인공지능, 로봇, '주변기술'인 가상 증강현실, 드론, 3D 4D 프린팅, 3D 스캐닝이 디지털 데이터 기반의 4차 산업혁명 기술로 조명되었다. 조경산업에 특화하여 '트렌드 수준'으로 응용하면 선순환적 가치증대에 활용이 가능한 것으로 나타났다. '시스템 수준'은 하나의 범용기술로 분석하였으며, 플랫폼을 중심으로 요소기술 수준, 컴퓨터와 스마트기기 등이 유기적으로 상호연계되어 시스템화된 디지털 데이터 기반의 4차 산업혁명 기술로 조명되었다. 조경산업에 특화하여 '트렌드 수준'으로 응용하면 선순환적 가치증대에 효과적인 기술로 나타났다. 요소기술 수준을 응용한 트렌드 수준에서 제시된 모든 활용 방안의 구현과 시너지효과 창출이 가능하다. 스마트정원, 스마트공원 등이 추구해야 하는 수준으로 분석되었다. 트렌드 수준의 인접산업 기술 중에는 스마트시티, 스마트홈, 스마트팜 및 정밀농업, 스마트관광, 스마트헬스케어가 협업에 의한 연계성이 클 것으로 판단되었다. 다음으로, 도시재생 공공공간을 포함한 조경공간의 조성 유지관리 및 서비스에서 도구이자 소재로서, 트렌드 수준으로 응용된 관련 기술의 다양한 활용 방안이 조명되었다. 즉, 유비쿼터스 컴퓨팅의 실현으로 조경공간에서 디지털 기술의 기본적 특성이 반영된 초연결화, 초실감화, 초지능화, 초융합화되는 방안들이 제시되었다. 조경산업이 도시재생 사업에 참여함에 있어서도, 기존 업무를 비롯하여 새로운 성격의 요구 수용 및 조율, 교육, 컨설팅 등에서 가치를 증대하는데 효과적인 것으로 분석되었다. 특히, 조경영역 전반이 전략적 교두보로 유지관리를 연계하여, 트렌드 수준의 관련 기술을 시스템화할 때 선순환적 가치증대에 효과적인 것으로 나타났다. 산업구조 상, 다양한 경로에서 생산된 데이터와 정보를 유통시키는데 효과적이기 때문이다. 향후 디지털 데이터 기반의 4차 산업혁명 기술을 실제 조경공간의 조성 유지관리 및 서비스에 융합하여 실증하는 등의 후속적 연구가 필요하다.