• Title/Summary/Keyword: ursodexycholic acid

Search Result 2, Processing Time 0.02 seconds

Anti-stress Effects of Ursodexycholic Acid on the Restraint Stress in Rats (흰쥐에서 구속스트레스에 대한 우루소데옥시콜린산의 항스트레스 효과)

  • 조태순;이선미;염제호;유은주;임승욱;장병수;김영만;유영효;박명환
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 1995
  • Effects of restraint stress and its modulations by ursodeoxycholic acid(UDCA) were evaluated on some biochemical and biophysical parameters in rats. Restraint stress induced elevations in blood alkaline phosphatase (ALP). cholesterol (CHOL), aspartate transaminase (GOT), alanine transaminase (GPT), lactate dehydrogenase (LDH) levels. It was also caused adrenal hypertrophy, decrease in weight of spleen and contents of ascorbic acid in stressed rats. As a results, stress indicators such as spleen, ascorbic acid, GOT, GPT, LDH were fastly changed after imposing stress, but those such as ALP, CHOL, adrenal were induced relatively later. UDCA was tested if it has an inhibitory effect against 18-hr restraint induced stress. UDCA lowered ALP, CHOL, LDH level and also effectively elevated the ascorbic acid contents in 25 mg/kg dosage of UDCA. In organ weights. the restraint stress induced increases in spleen and adrenal were attenuated by UDCA in 50 mg/kg dosage. However. stress-induced GOT and GPT levels were unaffected by UDCA.

  • PDF

Comparison of Physicochemical Properties between Ursodeoxycholic Acid and Chenodeoxycholic Acid Inclusion Complexes with ${\beta}-Cyclodextrin$ (우르소데옥시콜린산 및 케노데옥시콜린산의 베타시클로덱스트린 포접복합체의 물리화학적 특성비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Shin, Jae-Young
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.300-310
    • /
    • 1994
  • Physicochemical properties for the inclusion complex of chenodeoxycholic acid(CDCA) and it's $7{\beta}-hydroxy$ epimer ursodeoxycholic acid(UDCA) with ${\beta}-cyclodextrin({\beta}-CyD)$ were studied. The formation of the complex in the solid state were confimed by polarized microscopy and differential scanning calorimetry(DSC). Proton nuclear magnetic resonance$(^1H-NMR)$spectroscopy showed that CDCA and UDCA form an inclusion complex with ${\beta}-CyD$ in aqueous solution. The 1 : 1 stoichiometry of the complex was dextermined by the continuous variation method. From DSC and $^1H-NMR$ studies, there were not any differences between CDCA and UDCA. Complex of CDCA and UDCA showed increase in solubility and dissolution compared with CDCA and UDCA alone, respectively. Solubility pattern of UDCA complex was pH independent but, CDCA complex was like that of CDCA. Dissolution rate increased markedly in case of UDCA complex compared with CDCA complex, especially in acidic pH value.

  • PDF