• Title/Summary/Keyword: urinary p-nitrophenol

Search Result 4, Processing Time 0.024 seconds

Sampling and Analysis of Parathion in the Air and Urinary p-Nitrophenol for Parathion Manufacturing Workers (작업장 공기 중 파라티온과 작업자 소변 중 p-니트로페놀의 시료채취 및 분석)

  • Han, Don-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.300-309
    • /
    • 2007
  • Although parathion is an organophosphate pesticide being legally applied for the purpose of agriculture and is being manufactured, parathion in the air and urinary p-nitrophenol, a metabolite of parathion, were not analysed in Korea. Air of the parathion manufacturing workplace was sampled by OVS-2 tubes using NIOSH 5600 and spot urine of workers was sampled at the end of shift. Parathion and urinary p-nitrophenol were analysed by GC/MS (5973 MSD connected with Agilent 6890 GC) and the protocol was included in this study. It was found that this protocol should be so sensitive that determining parathion in the air and urinary p-nitrophenol below level of ACGIH TLV and BEI be adequate. Another finding was that total sampling volume of air of NIOSH 5600 of 240 L should be adjusted to be less than 120 L due to breakthrough.

Effects of Multiple Exposures to Pesticides on Plasma Cholinesterase Activity and p-nitrophenol Excretion in Rats (농약의 복합투여가 백서의 혈장 콜린에스테라제 활성도 및 요중 파라-니트로페놀 배설에 미치는 영향)

  • Cha, Bong-Suk;Park, Jung-Gyun;Park, Jong-Ku;Chang, Sei-Jin
    • Journal of Preventive Medicine and Public Health
    • /
    • v.25 no.2 s.38
    • /
    • pp.180-188
    • /
    • 1992
  • The effects of multiple exposures to pesticides on plasma cholinesterase(ChE) activities and urinary p-nitrophenol excretion were evaluated in rats. Rats were received single dose i.p. with $LD_{50}/100(mg/kg)$ of organophosphorous(OP), organophosphorous-organochroline(OP-OC), organophosphorous-carbamate(OP-CAB), organophosphorous-organoarsenate(OP-OA) pesticides for 4 consecutive days. In repeated administration of pesticides, plasma ChE activities were decreased, but urinary p-nitrophenol were increased after the first injection and then decreased gradually The recovery rates of ChE activities and p-nitrophenol excretion at 48 hours after the fourth Injection were delayed in comparision with the baseline value of 24 hours before the first injection. Statistical significances were found between OP and other groups except OP-OA group after the second injection in plasma ChE activities, but in urinary p-nitrophenol excretion there was statistical significance only between OP and OP-CAB.

  • PDF

Alterations of Blood Cholinesterase Activity and Urinary Para-nitrophenol Excretion After Exposure to Organophosphorus Insecticides (유기인제 농약 폭로로 인한 혈중 Cholinesterase 활성치와 요중 P-nitrophenol의 배설량의 변동)

  • Lee, Byung-Kook;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.1
    • /
    • pp.115-121
    • /
    • 1974
  • In order to evaluate the health hazard due to exposure to organophosphorus insecticides, we measured the blood cholinesterase activity ana urinary para-nitrophenol among 56 exposed subjects. They are orchard workers, rice plant workers and smithion factory workers. The clinical symptoms were also checked by physicians. We also measured the blood cholinesterase activity and urinary para-nitrophenol excretion of 20 urban people and 15 rural people who had never been exposed to organophosphorus insecticides in order to compare them according to age, sex and geographical differences. And these results were also compared with those of exposed groups. The results obtained were as follows. 1. The normal plasma cholinesterase activity and cell cholinestrase activity were $0.861{\pm}0.148\;{\Delta}pH/hr$ and $0.822{\pm}0.154\;{\Delta}pH/hr$. And normal para-nitrophenol in urine was $1.21{\pm}0.52mg/liter$. 2. No significant difference was existed in blood cholinesterase activities and urinary para-nitrophenol excre tion according to sex, age and geographical difference. 3. The plasma cholinesterase activity and cell cholinesterase activity of orchard workers, rice plant workers and smithion factory workers were $0.682{\pm}0.189\;{\Delta}pH/hr,\;0.775{\pm}0.160\;{\Delta}pH/hr,\;0.754{\pm}0.123\;{\Delta}pH/hr,\;and\;0.691{\pm}0.082\;{\Delta}pH/hr,\;0.756{\pm}0.117\;{\Delta}pH/hr,\;0.739{\pm}0.117\;{\Delta}pH/hr$. And significant decreses in blood cholinesterase activities were existed among orchard workers and smithion factory workers compared with control group. 4, The urinary para-nitrophenol excretions of orchard workers, rice plant workers and smithion factory workers were $1.33{\pm}0.66mg/liter,\;1.19{\pm}0.88mg/liter\;and\;1.37{\pm}0.67mg/liter$ and there were no significant difference between exposed groups and control group. 5. The clinical symptoms complained during and after organophosphorus insecticides exposure were frequently ranked by headache (67.7%) and vertigo (64.5%) and muscular ataxia and weakness (51.6%).

  • PDF

Determination of Parathion Metabolite, p-Nitrophenol in Urine of Parathion Factory Workers

  • Han, Don-Hee;Jung, Dong-Gyun;Shin, Ho-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.985-987
    • /
    • 2008
  • Parathion is an organophosphate pesticide being legally applied for the purpose of agriculture and is being manufactured in Korea. A gas chromatography/mass spectrometric method was developed for the determination of parathion urinary metabolite, p-nitrophenol. p-Nitrophenol was extracted from weak acidic urine, and then measured by gas chromatography-mass spectrometry (selected ion monitoring). The recovery of pnitrophenol in the overall procedure was 88.2%. The detection limit of the assay was 1.0 $\mu$ g/L based upon assayed urine of 2.0 mL. The method was applied to the determination of p-nitrophenol in urine of workers of a parathion industry. Spot urines of workers of a parathion industry were sampled at the end of shift and pnitrophenol was analyzed using above developed method. p-Nitrophenol could be detected in all of the urine samples at concentrations varying from 3.0 to 681 $\mu$ g/L.