• Title/Summary/Keyword: uridine

Search Result 150, Processing Time 0.028 seconds

Effects of Dietary Nucleotide Supplementation on the Growth Performance, Feed Utilization, Hematological Parameters and Innate Immunity in Red Seabream Pagrus major (사료 내 Nucleotides 첨가가 참돔P(agrus major)의 성장, 사료효율, 혈액성상 및 비특이적 면역반응에 미치는 영향)

  • Song, Jin-Woo;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.785-792
    • /
    • 2013
  • Two studies were conducted to investigate the effects of dietary nucleotides (NT) on the growth performance, hematological parameters, and innate immune responses of red seabream Pagrus major. In Expt I, six experimental diets were formulated: a control, four that contained each NT at a level of 0.15% (inosine monophosphate, IMP; adenosine monophosphate, AMP; guanosine monophosphate, GMP; and uridine monophosphate, UMP), and one with a 1:1:1:1 mixture of NTs (IMP, AMP, GMP, and UMP). In Expt II, five experimental diets were formulated that contained 0, 0.1, 0.2, 0.4, and 1.0% IMP (commercial product). Triplicate groups of juvenile (initial body weight 33.1 g) and growing (initial body weight 120 g) red seabream were fed one of the experimental diets to apparent satiation for 8 weeks in Expt I and 12 weeks in Expt II. In Expt I, fish fed diets with NT had higher growth performance than the control group. The nitroblue tetrazolium and lysozyme activities were higher in fish fed the mixed-NT diet, and lowest in the control group. In Expt II, the final body weight and feed utilization of fish fed the 0.1% IMP diet were significantly higher than those of fish fed the control or 1.0% IMP diets. Diet palatability was improved significantly when 0.1% IMP was added. The lysozyme activity was higher in fish fed diets with 0.4-1.0% than in the control group. These results suggest that supplementation of 0.15% IMP and Mixed-NTs in diet can enhance the growth and immune responses in juvenile red seabream. The optimum IMP level appears to be 0.2% in practical feed formulation for growing red seabream.

Study on Antiestrogenic Effects of Tamoxifen in Immature Rat Uterus: II. Effects on Synthesis of Ribonucleic Acid and Protein (미성숙 쥐 자궁에서 Tamoxifen의 Antiestrogen 효과에 관한 연구 : II. Ribonucleic Acid 및 단백질 합성능력에 관하여)

  • Lee, Hyo-jong;Jo, Choong-ho;Park, Moo-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 1986
  • The present study has been carried out to elucidate the antiestrogenic effects of tamoxifen on RNA and protein synthesis in uteri of immature rats. Immature female Sprague-Dawley rats were allocated into 4 groups and injected with $5{\mu}g$ of estradiol-$17{\beta}$, $50{\mu}g$ of tamoxifen, a combination of both, or vehicle only subcutaneously three times with an interval of 24 hours respectively. The specific activities of $^3H$-uridine incorporation into uterine RNA and those of $^3H$-leucine incorporation into uterine protein were measured before and 1, 3, 6, 12, 24, 48 and 72 hours after the above treatments. The results obtained were summarized as follows; 1. Tamoxifen itself increased RNA synthesis an hour after treatment(169.18% of control), but it's specific activity was reduced to control level after 3 hours. Tamoxifen inhibited significantly (p<0.01) the activity of RNA synthesis of estradiol-$17{\beta}$. 2. The increasing rate of protein synthesis was lower in tamoxifen treated group than that in estradiol-$17{\beta}$ treated group. While the rate was steadily increased up to 357.4% of control by estradiol-$17{\beta}$ in 72 hours, tamoxifen itself failed to increase the rate after 24 hours and significantly (p<0.01) inhibited the activity of estradiol-$17{\beta}$(-167.4%).

  • PDF

Inducing re-epithelialization in skin wound through cultured oral mucosal keratinocytes

  • Kim, Hyun Sil;Kim, Nam Hee;Kim, Jin;Cha, In Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • Objectives: The purpose of this study was to investigate the wound healing effect of primary cultured oral mucosal keratinocytes (OMKs) and to assess their roles in skin wounds. Materials and Methods: OMK labeled with BromodeoxyUridine were scattered onto $1.5{\times}1.5$ cm skin defects of adult female nude mice (OMK group, n=15). For the control, culture media were placed on the wound (control group, n=15). Mice in both groups were sacrificed at three days (n=5), one week (n=5), and two weeks (n=5), and histomorphometric and immunoblot analyses with keratinocyte growth factor (KGF), interleukin (IL)-6, and IL-$1{\alpha}$ antibody were performed for the biopsied wound specimen. To verify the effect of the cytokine, rhIL-$1{\alpha}$ was applied instead of OMK transplantation, and the OMK and control groups were compared with regard to re-epithelialization. Results: Histomorphometric analyses demonstrated faster re-epithelialization in the graft group than in the control group at the third day, first week, and second week. Newly forming epithelium showed maintenance of the histological character of the skin epithelium. The graft group showed superior expression of KGF, IL-6, and IL-$1{\alpha}$ protein, compared with the control group. Similar faster re-epithelialization was observed after treatment with rhIL-$1{\alpha}$ instead of OMK transplantation. Conclusion: We successfully confirmed that the graft of primary cultured OMKs promoted regeneration of skin defects. The mechanism of accelerated wound healing by primary cultured OMKs was attributed to inducement of cytokine expression as required for re-epithelialization.

Zebrafish Dnd protein binds to 3'UTR of geminin mRNA and regulates its expression

  • Chen, Shu;Zeng, Mei;Sun, Huaqin;Deng, Wenqian;Lu, Yilu;Tao, Dachang;Liu, Yunqiang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.438-444
    • /
    • 2010
  • Dnd (dead end) gene encodes an RNA binding protein and is specifically expressed in primordial germ cells (PGCs) as a vertebrate-specific component of the germ plasma throughout embryogenesis. By utilizing a technique of specific nucleic acids associated with proteins (SNAAP), 13 potential target mRNAs of zebrafish Dnd (ZDnd) protein were identified from 8-cell embryo, and 8 target mRNAs have been confirmed using an RT-PCR analysis. Of the target mRNAs, the present study is focused on the regulation of geminin, which is an inhibitor of DNA replication. Using electrophoretic mobility shift assay (EMSA), we demonstrated that ZDND protein bound the 67-nucleotide region from 864 to 931 in the 3'UTR of geminin mRNA, a sequence containing 60.29% of uridine. Results from a dual-luciferase assay in HEK293 cells showed that ZDND increases the translation of geminin. Taken together, the identification of target mRNA for ZDnd will be helpful to further explore the biological function of Dnd in zebrafish germ-line development as well as in cancer cells.

Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos

  • Park, Dong-Seok;Yoon, Mijung;Kweon, Jiyeon;Jang, An-Hee;Kim, Yongsub;Choi, Sun-Cheol
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.823-827
    • /
    • 2017
  • Genome editing using programmable nucleases such as CRISPR/Cas9 or Cpf1 has emerged as powerful tools for gene knock-out or knock-in in various organisms. While most genetic diseases are caused by point mutations, these genome-editing approaches are inefficient in inducing single-nucleotide substitutions. Recently, Cas9-linked cytidine deaminases, named base editors (BEs), have been shown to convert cytidine to uridine efficiently, leading to targeted single-base pair substitutions in human cells and organisms. Here, we first report on the generation of Xenopus laevis mutants with targeted single-base pair substitutions using this RNA-guided programmable deaminase. Injection of base editor 3 (BE3) ribonucleoprotein targeting the tyrosinase (tyr) gene in early embryos can induce site-specific base conversions with the rates of up to 20.5%, resulting in oculocutaneous albinism phenotypes without off-target mutations. We further test this base-editing system by targeting the tp53 gene with the result that the expected single-base pair substitutions are observed at the target site. Collectively, these data establish that the programmable deaminases are efficient tools for creating targeted point mutations for human disease modeling in Xenopus.

Toxicological Effects of B(a)P on Preimplantation Mouse Embryos in Vitro (in vitro에서 B(a)P이 착상전 마우스 배자에 미치는 독성학적 영향에 관한 연구)

  • 박귀례;이유미;김판기;신재호;강태석;김주일;장성재
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.126-133
    • /
    • 1998
  • Effects of B(a)P on preimplantation mouse embryos in vitro were studied. Preimplantation mouse embryos were exposed to a concentration of 0.3, 1, 3 and 10 $\mu$M B(a)P for 72 hrs. The toxicological effects of B(a)P were evaluated by morphological observation of embryos up to the blastocyst stage, and by measuring DNA, RNA and protein synthesis by radioactive precursor incorporation. At 1 $\mu$M B(a)P did not affect preimplantation development but interfered with hatching and ICM formation. Suppressing effect of ICM formation was dose dependent. At the eight cell stage, the developmental rate was decreased at above 3 $\mu$M of B(a)P. At the blastocyst stage, attachment and trophoblast outgrowth were diminished at the 10 $\mu$M of B(a)P and ICM formation was decreased at 1 $\mu$M of B(a)P. Inner cell number of blastocyst was decreased dose dependently. So, number of ICM was one of the most sensitive and toxicological end point. The RNA incorporation rate of 0.1 $\mu ^3$H-uridine was dosedependent and the protein incroporation of 0.5 $\mu Ci ^{35}$S-methionine showed a significant decrease after 48 hrs. But the DNA incorporation rate of methyl-$^3$H thymidine was not affected. Our results suggested that B(a)P did not affect the DNA replication but transcription was inhibited by dose dependent manner. There delay of development during the blastocyst stage was mainly due to the inhibition of RNA synthesis followed by protein synthesis.

  • PDF

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

Neuroprotective effects of L-carnitine against oxygen-glucose deprivation in rat primary cortical neurons

  • Kim, Yu-Jin;Kim, Soo-Yoon;Sung, Dong-Kyung;Chang, Yun-Sil;Park, Won-Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.238-248
    • /
    • 2012
  • Purpose: Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD). Methods: Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO) and propidium iodide (PI) were counted, and lactate dehydrogenase (LDH) activity and reactive oxygen species (ROS) levels were measured. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 ${\mu}M$, 10 ${\mu}M$, and 100 ${\mu}M$) on OGD-induced neurotoxicity. Results: Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 ${\mu}M$ and 100 ${\mu}M$ of L-carnitine compared with the untreated OGD group (P<0.05). The application of L-carnitine at 100 ${\mu}M$ significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P<0.05). Conclusion: L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.

Prenatal Diagnosis of Mucolipidosis Type II: Comparison of Biochemical and Molecular Analyses

  • Kosuga, Motomichi;Okada, Michiyo;Migita, Osuke;Tanaka, Toju;Sago, Haruhiko;Okuyama, Torayuki
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • Purpose: Mucolipidosis type II (ML II), also known as I-cell disease is an autosomal recessive inherited disorder of lysosomal enzyme transport caused by a deficiency of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase). Clinical manifestations are skeletal abnormalities, mental retardation, cardiac disease, and respiratory complications. A severely and rapidity progressive clinical course leads to death before 10 years of age. Methods/Results: In this study we diagnosed three cases of prenatal ML II in two different at-risk families. We compared two procedures -biochemical analysis and molecular analysis - for the prenatal diagnosis of ML II. Both methods require an invasive procedure to obtain specimens for the diagnosis. Biochemical analysis requires obtaining cell cultures from amniotic fluid for more than two weeks, and would result in a late diagnosis at 19 to 22 weeks of gestation. Molecular genetic testing by direct sequence analysis is usually possible when mutations are confirmed in the proband. Molecular analysis has an advantage in that it can be performed during the first-trimester. Conclusion: Molecular diagnosis is a preferable method when a prompt decision is necessary.

Phytochemical Studies on Rehmanniae Radix Preparata (숙지황(熟地黃)의 성분연구)

  • Lee, Joo-Young;Lee, Eun-Ju;Kim, Ju-Sun;Lee, Je-Hyun;Kang, Sam-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.2
    • /
    • pp.117-126
    • /
    • 2011
  • Twenty-two compounds were isolated from the 70% ethanolic extract of Rehmanniae Radix Preparata (Scrophulariaceae) and their structures were identified as three triterpenoids [oleanolic acid (1), pomonic acid (2) and ursolic acid (5)], an iridoid, catalpol (13), four furan derivatives [5-hydroxymethyl-2-furaldehyde acetate (3), 5-hydroxymethyl-2-furfural (6), 5-hydroxymethyl-2-furancarboxylic acid (7), and 5-(${\alpha}$-D-galactopyranosyloxymethyl)-2-furancarboxaldehyde (15)], three phenethyl alcohol glycosides [darendoside B (14), phenethyl alcohol 2-O-${\beta}$-D-xylopyranosyl(1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (17), and salidroside (19)], four sugar derivatives [L-arabinose (11), raffinose (20), stachyose (21), and mannitol (22)], and seven others [2,5-dihydroxyacetophenone (4), succinic acid (8), daucosterol (9), ${\beta}$-sitosterol (10), adenosine (16), uridine (18) jio-cerebroside (12)]. The chemical structures of these compounds were identified on the basis of spectroscopic methods and comparison with literature values. This is the first report of the triterpenoids oleanolic acid (1), pomonic acid (2), and ursolic acid (5) from the genus Rehmannia, as well as the first report of compounds 5-hydroxymethyl-2-furaldehyde acetate (3), 2,5-dihydroxyacetophenone (4), daucosterol (9), darendoside B (14), 5-(${\alpha}$-D-galactopyranosyloxymethyl)-2-furancarboxaldehyde (15), adenosine (16), phenethyl alcohol 2-O-${\beta}$-D-xylopyranosyl(1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (17), and salidroside (19) from the Rehmanniae Radix Preparata.