• Title/Summary/Keyword: urea-formaldehyde resin

Search Result 123, Processing Time 0.029 seconds

Measurement of Formaldehyde Emissions during Hot-Pressing of Particleboard Bonded with Melamine-Urea-Formaldihyde Resin (요소-멜라민수지로 접착된 파티클보드의 열압동안 포름알데히드 배출량 측정)

  • Lee, Jong-Kyu;Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • A melamine-urea-formaldehyde (MUF) resin, based on 5 percent melamine addition of the resin solids weight, was synthesized in the laboratory for particleboard (PB) manufacture. Laboratory PBs were made with the MUF resin at three press times (3, 4, 5 min) and two resin application rates (6, 8 percent). Enclosed caul system was used for collecting the exhaust gases materials generated during the hot-pressing of PBs. Exhaust gases materials generated inside the enclosed caul during the hot-pressing of PBs were collected in a controlled air stream. Formaldehyde from the exhaust gases collected was determined per a chromotropic method of the National Institute of Occupational Safety and Health Method 3500. The measurement results showed that formaldehyde emissions during the hot-pressing of PB significantly increased with increasing press time, and MUF resin application rates. PB' performance test results showed that internal bond (IB) of PB made with 3-minute press time exceeded the minimum requirement for KS F 3104 PB type 8.0.

A study on the utilization of potato, sweet potato, and jelusalem artichoke flour as an extender of urea formaldehyde resin for plywood (고구마, 감자 및 돼지감자 분말(粉末)을 이용(利用)한 합판용(合板用) 요소수지(尿素樹脂)의 증량(增量)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Lee, Wha-Hyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.11-15
    • /
    • 1973
  • This study was carried out to utilize sweet potato, and jerusalem artichoke flour as an extender of urea formaldehyde resin for plywood manufacture. The results obtained are summarized as follows: 1) In dry and wet test of plywood, sweet potato flour extended in urea formaldehyde resin was shown better strength than those of wheat flour. 2) Sweet potato flour was shown good results up to 200 percent extension in the dry test, and there was not shown significant difference between 100 percent and 150 percent extension in the wet test. 3) In the case of 100 percent extension, potato flour was shown best dry shear strength(400 psi) and sweet potato flour was shown best wet shear strength (212 psi).

  • PDF

Evaluation of Com-Ply from Domestic Logs and Urea-Formaldehyde Resin Adhesive (국산재와 요소수지접착제로 제조된 Com-Ply의 평가)

  • Oh, Yong-Sung;Kim, Jong-In
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.54-57
    • /
    • 2007
  • Urea-formaldehyde (UF) resin was formulated similarly to plywood resin in the laboratory. The synthesized UF resin adhesive was mixed with extender, filler and acid catalyst. The mixture contained 56.1% total solids and 43.9% water. The mixes was used to bond five Com-Ply types using Korean wood species. The Com-Ply made were tested for shear strength and wood failure according to KS F 3101 ordinary plywood as well as for bending strength per KS F 3104 particleboard. The performance test results showed good strength properties for all Com-Ply types made in this study. This result represented that the UF resin adhesive mix was adequate for bonding Com-Ply with domestic wood species.

Properties of Particleboard Made from Pinus densiflora Thinning Log with Extended Urea-Formaldehyde Resin Adhesive (증량된 요소수지 접착제와 소나무 간벌재로 제조된 파티클보드의 성질)

  • Oh, Yong-Sung;Kwak, Jun-Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.22-26
    • /
    • 2003
  • Particleboards (PBs) were made from Pinus densiflora thinning particle with urea-formaldehyde (UF) resin added casein and soybean as extender. The performance test results of the PB made showed that Pinus densiflora thinning log was suitable raw material for PB. As the extender addition in the UF resin was increased, the mechanical performance of the PB, bonded with the extended UF resin, were significantly decreased. However, casein and soybean can be used up to 15% and 20% of the UF resin solids respectively.

Performance of Urea-Formaldehyde Resins Synthesized at Two Different Low Molar Ratios with Different Numbers of Urea Addition

  • Jeong, Bora;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.221-228
    • /
    • 2019
  • This study reports the performance of urea-formaldehyde (UF) resins prepared at two different low formaldehyde/urea (F/U) mole ratios with different numbers of urea addition during synthesis. The second or third urea was added during the synthesis of UF resins to obtain two different low molar ratios of 0.7 and 1.0, respectively. The molecular weights, cure kinetics, and adhesion performance of these resins were characterized by the gel permeation chromatography, differential scanning calorimetry, and tensile shear strength of plywood, respectively. When the number of urea additions and F/U molar ratio increased, the gelation time decreased, whereas the viscosity and molecular weight increased. Further, the UF resins prepared with the second urea and 1.0 molar ratio resulted in greater activation energy than those with third urea and 0.7 molar ratio. Tensile shear strength and formaldehyde emission (FE) of the plywood that bonded with these resins increased when the number of urea additions and molar ratio increased. These results suggest that the UF resins prepared with 0.7 molar ratio and third urea addition provide lower adhesion performance and FE than those resins with 1.0 mole ratio and the second urea addition.

Examination of Formaldehyde Emissions from the Hot-Pressing of Particleboard (파티클보드의 열압으로부터 포름알데히드 배출량 조사)

  • Oh, Yong-Sung;Kwak, Jun-Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.33-39
    • /
    • 2001
  • Laboratory particleboards (PBs) were made with urea-formaldehyde (UF) resins at four press times and two resin application rates. Enclosed caul system was used for collecting the exhaust gases materials generated during the hot-pressing of PB. Exhaust gases materials generated inside the enclosed caul during the hot-pressing of PB were collected in a controlled air stream. Formaldehyde from the exhaust gases collected was determined per a chromotropic method of the National Institute of Occupational Safety and Health Method 3500. The test results showed that formaldehyde emissions during the hot-pressing of PB increased with increasing press time, UF resin mole ratio, and resin application rate.

  • PDF

Performance of Melamine-Urea-Formaldehyde Resin Adhesives at Various Melamine Contents for Bonding Glued Laminated Timber Under High Frequency Heating

  • Hong, Min-Kug;Park, Byung-Dae;Kim, Keon-Ho;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.409-418
    • /
    • 2017
  • This work attempted to manufacture glued-laminated timber (Glulam) bonded with melamine-urea-formaldehyde (MUF) resin adhesives at various melamine contents from 20% to 50% under high frequency (HF) heating for a very short time. Two preparation methods were employed to prepare MUF resin adhesives with different melamine contents: one-batch method of synthesizing MUF resins in a single batch, and two-batch method of mixing urea-formaldehyde (UF) resin with melamine-formaldehyde (MF) resin that had been synthesized separately. As the melamine content increased, the gelation time and peak temperature of MUF resins decreased. The adhesion performance of plywood showed that the one-batch MUF resin adhesive with 50% melamine content only satisfied the standard requirement of water resistance. Thus, the one-batch MUF resin adhesive with 50% melamine content was applied for bonding wood lamina from four softwood species such as Japanese larch, Korean red pine, Korean pine and Japanese cedar to manufacture Glulam under HF heating. All Glulam samples bonded with the one-batch MUF resin adhesives with 50% melamine content except those from Korean Red Pine satisfied the requirement in water soaking or boiling water delamination test as an exterior grade Glulam. The presence of rosin in Korean Red Pine was believed to be responsible for its poor adhesion. These results showed that the one-batch MUF resin adhesives with 50% melamine content provided acceptable water resistance with exterior grade Glulam manufactured under HF heating.

Hydrolytic Stability of Cured Urea-Melamine-Formaldehyde Resins Depending on Hydrolysis Conditions and Hardener Types

  • Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.672-681
    • /
    • 2015
  • As a part of abating the formaldehyde emission of amino resin-bonded wood-based composite panels, this study was conducted to investigate hydrolytic stability of urea-melamine-formaldehyde (UMF) resin depending on various hydrolysis conditions and hardener types. Commercial UMF resin was cured and ground into a powdered form, and then hydrolyzed with hydrochloric acid. After the acid hydrolysis, the concentration of liberated formaldehyde in the hydrolyzed solution and mass loss of the cured UMF resins were determined to compare their hydrolytic stability. The hydrolysis of cured UMF resin increased with an increase in the acid concentration, time, and temperature and with a decrease in the smaller particle size. An optimum hydrolysis condition for the cured UMF resins was determined as $50^{\circ}C$, 90 minutes, 1.0 M hydrochloric acid and $250{\mu}m$ particle size. Hydrolysis of the UMF resin cured with different hardener types showed different degrees of the hydrolytic stability of cured UMF resins with a descending order of aluminum sulfate, ammonium chloride, and ammonium sulfate. The hydrolytic stability also decreased as the addition level of ammonium chloride increased. These results indicated that hardener types and level also had an impact on the hydrolytic stability of cured UMF resins.

Effects of Paper Sludge Addition on Formaldehyde Emission, and Physical and Mechanical Properties of UF-Particleboard (제지 슬러지의 첨가가 요소수지 파티클보드의 포름알데히드 방산 및 물리적, 기계적 성질에 미치는 영향)

  • Kim, Dae-Jun;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • This research was carried out to investigate the effect of paper sludge addition on formaldehyde emission, and physical and mechanical properties of UF-particleboard. In order to investigate the effect of paper sludge addition to resin, particleboards were bonded with urea-formaldehyde resins containing 5, 10, 15% paper sludge powders of three types(A Type: -200 mesh, B Type: -100~+200 mesh. C Type: -50~+100 mesh), based on weight of resin solid. Also the effect of paper sludge addition to furnish was studied from particleboards fabricated with ratios of sludge to particle of 5:95, 10:90, 15:85 based on oven-dry weight. Tests were conducted on the manufactured particleboards to determine formaldehyde emission, bending properties, internal bond strength and thickness swelling. The obtained results were summarized as follows: The addition of paper sludge powder to resin yielded a higher pH of cured resin. Formaldehyde emission decreased with the increase of paper sludge powder addition to resin and paper sludge composition ratio to furnish. Particleboard bonded with urea-formaldehyde resin containing paper sludge powder and particleboard mixed with paper sludge have similar bending properties(MOR, MOE) and thickness swelling compared with control particleboard. Internal bond strength of particleboards treated with paper sludge were lower than that of control particleboard. The use of paper sludge as scavenger was achieved reduction of formaldehyde emission without depression of physical and mechanical properties of particleboard. Also the use of paper sludge was able to concluded that there is possibility of partial substitution of wood particle materials.

  • PDF

Coagulation of Synthetic Reactive Dye Wastewater by Cyanoguanidine-formaldehyde Resin (Cyanoguanidine-formaldehyde Resin에 의한 반응성 염료 응집 특성)

  • Nah, In Wook;Jin, Yang Oh;Hwang, Kyung Yub
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2135-2139
    • /
    • 2000
  • The coagulation of anionic colloidal particles by the cyanoguanidine(CG)-formaldehyde resin has been reported to be caused by an electrostatic interaction of the diaminomethylene urea (DU) cation with an anionic surface charge of particles. In this research, 100~500 nm sized cationic cyanoguanidine-formaldehyde resin was synthesized to coagulate anionic dye wastewater, and the results showed that the less pH of aqueous cyanoguanidine-formaldehyde resin solution was, the higher Zeta potential of that was. In case of coagulating 0.4 g/L reactive dye by cyanoguanidine-formaldehyde resin at pH 3, 5, 7, 9, and 11, COD removal and the percent decolorization of synthetic dye wastewater at pH 3 are higher than those of other pH conditions. The COD removal and the percent decolorization of synthetic dye wastewater were 74% and 90% at 400 ppm, pH 3.

  • PDF