• Title/Summary/Keyword: ureC

Search Result 32, Processing Time 0.024 seconds

Expession of the Recombinant Klebsiella aerognes UreF Protein as a MalE Fusion

  • Kim, Keun-Young;Yang, Chae-Ha;Lee, Mann-Hyung
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.274-278
    • /
    • 1999
  • Expression of the active urease of the enterobacterium, Klebsiella aerogens, requires the presence of the accessory genes (ureD, ureE, ureF, and ureG) in addition to the three structural genes (ureA, ureB, and ureC). These accessory genes are involved in functional assembly of the nickel-metallocenter for the enzyme. Characterization of ureF gene has been hindered, however, since the UreF protein is produced in only minute amount compared to other urease gene products. In order to overexpress the ureF gene, a recombinant pMAL-UreF plasmid was constructed from which the UreF was produced as a fusion with maltose-binding protein. The MBP-UreF fusion protein was purified by using an amylose-affinity column chromatography followed by an anion exchange column chromatography. Polyclonal antibodies raised against the fusion protein were purified and shown to specifically recognize both MBP and UreF peptides. The UreF protein was shown to be unstable when separated from MBP by digestion with factor Xa.

  • PDF

Temperature-Dependency Urease Activity in Vibrio parahaemolyticus is Related to Transcriptional Activator UreR

  • Park, Kwon-Sam;Lee, Soo-Jae;Chung, Yong-Hyun;Iida, Tetsuya;Honda, Takeshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1456-1463
    • /
    • 2009
  • Vibrio parahaemolyticus possessing urease-positive property is relatively rare, but such strains consistently exhibit the TDH-related hemolysin (TRH) gene. In this study, we examined the effects of incubation temperature on urease activity expression, using the TH3996 and AQ4673 strains where the enzyme activity is known to be temperature-dependent and -independent, respectively. In the TH3996 strain, $\beta$-galactosidase activity was 4.4-fold lower after $30^{\circ}C$ cultivation than after $37^{\circ}C$ in a ureR-lacZ fusion strain, but temperature dependency was not found in ureD- or nikA-lacZ fusion strains. However, ureR-, ureD-, and nikA-lacZ fusions of the AQ4673 strain was not influenced by incubation temperature. We compared the promoter sequences of ureR between the above two strains. Intriguingly, we detected mismatches of two nucleotides between the two strains located at positions -66 and -108 upstream of the methionine initiation codon for UreR. Additionally, urease activity was not affected by culture temperature at either $30^{\circ}C$ or $37^{\circ}C$ by allelic introduction of the AQ4673 ureR gene into the TH3996 ureR deletion mutant. Taken together, our study demonstrates that the transcriptional factor UreR is involved in the temperature dependency of urease activity, and two nucleotides within the ureR promoter region are of particular importance for the urease activity dependency of V. parahaemolyticus.

NICKEL INCORPORATION INTO Klebsiella aerogenes UREASE (Klebsiella aerogenes Urease로의 닉켈의 도입)

  • Lee, Mann-Hyung-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.69-80
    • /
    • 1994
  • Although ureases play important roles in microbial nitrogen metabolism and in the pathogenesis of several human diseases, little is known of the mechanism of metallocenter biosynthesis in this Ni-Containing enzyme. Klebsiella aerogenes urease apo-protein was purified from cells grown in the absence of Ni. The purified apo-enzyme showed the same native molecular weight, charge, and subunit stoichiometry as the holo-enzyme. Chemical modification studies were consistent with histidinyl ligation of Ni. Apo-enzyme could not be activated by simple addition of Ni ions suggesting a requirement for a cellular factor. Deletion analysis showed that four accessory genes (ureD, ureE, ureF, and ureG) are necessary for the functional incorporation of the urease metallocenter. Whereas the $\Delta$ureD, $\Delta$ureF, and $\Delta$ureG mutants are inactive and their ureases lack Ni, the $\Delta$ureE mutants retain partial activity and their ureases possess corresponding lower levels of Ni. UreE and UreG peptides were identified by SDS-polyacrylamide gel comparisons of mutant and wild type cells and by N-terminal sequencing. UreD and UreF peptides, which are synthesized at ve교 low levels, were identified by using in vitro transcription/translation methods. Cotransformation of E. coli cells with the complementing plasmids confirmed that ureD and ureF gene products act in trans. UreE was purified and characterized. immunogold electron microscopic studies were used to localize UreE to the cytoplasm. Equilibrium dialysis studies of purified UreE with $^{63}$ NiC1$_2$ showed that it binds ~6 Ni in a specific manner with a $K_{d}$ of 9.6 $\pm$1.3 $\mu$M. Results from spectroscopic studies demonstrated that Ni ions are ligated by 5 histidinyl residues and a sixth N or O atom, consistent with participation of the polyhistidine tail at the carboxyl termini of the dimeric UreE in Ni binding. With these results and other known features of the urease-related gene products, a model for urease metallocenter biosynthesis is proposed in which UreE binds Ni and acts as a Ni donor to the urease apo-protein while UreG binds ATP and couples its Hydrolysis to the Ni incorporation process.ouples its Hydrolysis to the Ni incorporation process.s.

  • PDF

Activation of Urease Apoprotein of Helicobacter pylori

  • Cho, Myung-Je;Lee, Woo-Kon;Song, Jae-Young;An, Young-Sook;Choi, Sang-Haeng;Choi, Yeo-Jeong;Park, Seong-Gyu;Choi, Mi-Young;Baik, Seung-Chul;Lee, Byung-Sang;Rhee, Kwang-Ho
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.533-542
    • /
    • 1999
  • H. pylori produces urease abundantly amounting to 6% of total protein of bacterial mass. Urease genes are composed of a cluster of 9 genes of ureC, ureD, ureA, ureB, ureI, ureE, ureF, ureG, ureH. Production of H. pylori urease in E. coli was studied with genetic cotransformation. Structural genes ureA and ureB produce urease apoprotein in E. coli but the apoprotein has no enzymatic activity. ureC and ureD do not affect urease production nor enzyme activity ureF, ureG, and ureH are essential to produce the catalytically active H. pylori urease of structural genes (ureA and ureB) in E.coli. The kinetics of activation of H. pylori urease apoprotein were examined to understand the production of active H. pylori urease. Activation of H. pylori urease apoprotein, pH dependency, reversibility of $CO_2$ binding, irreversibility of $CO_2$ and $Ni^{2+}$ incorporation, and $CO_2$ dependency of initial rate of urease activity have been observed in vitro. The intrinsic reactivity (ko) for carbamylation of urease apoprotein co expressed with accessory genes was 17-fold greater than that of urease apoprotein expressed without accessory genes. It is concluded that accessory genes function in maximizing the carbamylating deprotonated ${\varepsilon}$-amino group of Lys 219 of urease B subunit and metallocenter of urease apoprotein is supposed to be assembled by reaction of a deprotonated protein side chain with an activating $CO_2$ molecule to generate ligands that facilitate productive nickel binding.

  • PDF

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

Cloning and Characterization of the Urease Gene Cluster of Streptococcus vestibularis ATCC49124

  • Kim Geun-Young;Lee Mann-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.286-290
    • /
    • 2006
  • A genomic library of Streptococcus vestibularis ATCC49124 was constructed in an E. coli plasmid vector, and the urease-positive transformants harboring the urease gene cluster were isolated on Christensen-urea agar plates. The minimal DNA region required for urease activity was located in a 5.6 kb DNA fragment, and a DNA sequence analysis revealed the presence of a partial ureI gene and seven complete open reading frames, corresponding to ureA, B, C, E, F, G, and D, respectively. The nucleotide sequence over the entire ure gene cluster and 3'-end flanking region of S. vestibularis was up to 95% identical to that of S. salivarius, another closely related oral bacterium, and S. thermophilus, isolated from dairy products. The predicted amino acid sequences for the structural peptides were 98-100% identical to the corresponding peptides in S. salivarius and S. thermophilus, respectively, whereas those for the accessory proteins were 96-100% identical. The recombinant E. coli strain containing the S. vestibularis ure gene cluster expressed a high level of the functional urease holoenzyme when grown in a medium supplemented with 1 mM nickel chloride. The enzyme was purified over 49-fold by using DEAE-Sepharose FF, Superdex HR 200, and Mono-Q HR 5/5 column chromatography. The specific activity of the purified enzyme was 2,019 U/mg, and the Michaelis constant ($K_{m}$) of the enzyme was estimated to be 1.4 mM urea. A Superose 6HR gel filtration chromatography study demonstrated that the native molecular weight was about 196 kDa.

VARIATION OF UREASE GENES(ureC) FROM Streptococcus salivarius (Streptococcus salivarisu의 요소분해효소 유전자 변이에 관한 연구)

  • Choi, Hye-Jin;Lee, Jin-Yong;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.535-545
    • /
    • 1999
  • Crease of Streptococcus salivarius is believed to play a critical role in bacterial ecology and pH homeostasis in the mouth, and consequently affect the pathogenesis of dental caries and periodontal diseases. Expression of the urease gene is greatly enhanced by low p. f. excess of Carbohydrate, and faster growth. It was observed that urease activity of the strains of S. salivarius that exhibited no of low urease activity was not increased even in low pH condition. In this study, it was hypothesized that the urease gene of the strains is absent, defected, or greatly changed by genetic combination. In order to prove this hypothesis, chromosomes were obtained from 28 S. salivarius strains which had been isolated from normal teeth and carious lesions, subjected to polymerase chain reaction (PCR) using primers encoding highly conserved sequence from ureC, and then the obtained PCR products were compared. The results were as follows: 1. After PCR the strains generated either one of 0.54- and 1.3-kbp PCR products, or none. 2. All 16 strains having a higher urease activity(<50${\mu}mol/min/mg$) produced 0.54-kbp PCR products. 3. Twelve strains without urease activity and with a lower urease activity(<50${\mu}mol/min/mg$) yield either one of 0.54 and 1.3-kbp PCR products, or none. 4. The DNA sequence of the 0.54-kbp PCR product (pCAP-0.54) exhibited 95% identity to the ureC of S. salivarus 57.I; 30bp were found to be different, which led to difference of only 2 amino acids in the sequence. 5. The DNA sequence of the 1.3-kbp PCR product(pCAP-1.3) was found to be highly homologous to the aminopeptidase C gene of Streptococcus thermophilus. Overall results indicate that there are considerable variations of the urease genes from S. salivarus strains and the variations may affect the uncolytic activity of the bacteria directly of indirectly.

  • PDF

PCR-Based RELP Analysis of ureC Gene for Typing of Indian Helicobacter pylori Strains from Gastric Biopsy Specimens and Culture

  • Mishra, Kanchan-Kumar;Prabhat P. Dwivedi;Prasad, Kashi-Nath;Archana Ayyagari
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.282-288
    • /
    • 2002
  • Since culture of Helicobacter pylori is relatively insensitive and cumbersome, molecular detection and typing of H. pylori isolates are gaining importance for strain differentiation. In the present study genomic DNA of 42 gastric biopsies and H. pylori isolates from corresponding patients were analyzed and compared by PCR-based RFLP assay. The 1,132-bp product representing an internal portion of ureC gene of H. pylori was amplified by PCR and digested with restriction enzymes HindⅢ, AiuⅠ and PvuⅠ. The HindⅢ, AluⅠ and PvuⅠ digestion produced 4, 7, and 2 distinguishable RFLP patterns respectively from 42-H. pylori isolates. By combining all three restriction enzyme digestions, 15 RFLP patterns were observed. However, when PCR products from 42 gastric biopsy specimens were digested by restriction enzymes HindⅢ, AluⅠ and PvuⅠ, we observed 5, 8 and 2 RFLP patterns, respectively. Patterns from 34 of 42 gastric biopsy specimens matched those of corresponding H. pylori isolates from respective patients. Patterns from the remaining eight biopsy specimens differed and appeared to represent infection with two H. pylori strains. The patterns of one strain from each of these biopsies was identical to that of the isolate from corresponding patients and the second pattern presumably represented the co-infecting strain. From the study, it appears that PCR-based RFLP analysis is a useful primary tool to detect and is distinguish H. pylori strains from gastric biopsy specimens and is superior to culture techniques in the diagnosis of infection with multiple strains of H. pylori.

The AC impedance of $LiM_{y}Mn_{2-y}O_{4}$cathode material by charge and discharge temperature (충방전 온도에 따른 $LiM_{y}Mn_{2-y}O_{4}$정극 활물질의 임피던스 특성 분석)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.351-354
    • /
    • 2000
  • AC impedance of LiM $n_2$ $O_4$ and LiM $g_{0.1}$M $n_{1.9}$ $O_4$ samples have been studied at various temperature with charge-discharge test. AC impedance of LiM $n_2$ $O_4$ measured at -2$0^{\circ}C$, room temperature and 5$0^{\circ}C$ revealed that initial impedance before charge-discharge test was gradually decreased and become small by becoming law temperature. It indicates that the Li ion diffusion and the transfer resistance of the cathode are related to the temperature of cycling. Impedance at high temperature was suddenly increased because Mn dissolution and decomposition of electrolyte had been increased during cycling, compared to impedance at low temperature. Therefore, charge-discharge capacity was suddenly decreased at high but was slowly at low. In LiM $g_{0.1}$M $n_{1.9}$ $O_4$, impedance and capacity were stability at room temperature than there at 5$0^{\circ}C$, too. Initial impedance at 5$0^{\circ}C$ before charge-discharge test was small and impedance was suddenly increased during cycling than that at room temperature.ure.ure.

  • PDF

Genetic Characterization of the Urease Gene Cluster in Photobacterium sp. Strain HA-2 Isolated from Seawater (해수에서 분리한 Photobacterium sp. Strain HA-2가 보유하는 요소분해효소 유전자의 유전적 특징)

  • Kim, Tae Ok;Park, Kwon Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.639-643
    • /
    • 2015
  • In this study, we cloned and sequenced the 15,204-bp DNA region containing the gene cluster for urease production from the chromosome of the environmental Photobacterium sp. strain HA-2. We identified 15 open reading frames (ORFs) and the G+C content was 40.3%. The urease gene cluster of Photobacterium sp. strain HA-2 consisted of seven genes, namely, ureDABCEF and ureG. There were five ORFs of urease genes in the opposite direction, which were homologous to the nickel transport operons (nik) of Vibrio parahaemolyticus and Escherichia coli. The genetic organization and sequences of the urease genes of Photobacterium sp. strain HA-2 resembled those found in Vibrio fischeri and V. parahaemolyticus.