• Title/Summary/Keyword: urban-runoff

Search Result 580, Processing Time 0.024 seconds

An Experimental Study on Runoff Reducing Effect of Infiltration-Storage System due to Rainfall Intensity (강우강도에 따른 침투-저류시스템의 우수유출저감효과에 관한 실험 연구)

  • Song, Jai-Woo;Im, Jang-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.85-95
    • /
    • 2007
  • The variation of hydraulic and hydrologic aspect of urban area according to the strongly seasonal variation of rainfall and the increment of urbanization has caused the runoff variation and increased the flood damage, and thus made a difficulty to manage water resources in urban area. Recently, as a part of efforts to resolve these problems, the facilities for reducing runoff increasing due to urbanization have a tendency to install in our country. In this study, more effective Infiltration-Storage System(ISS) is proposed and its reducing effect is analyzed by hydraulic experimental study. The infiltration characteristics of runoff reduction facilities are examined as varying artificial rainfall and a material of infiltration layers being able to consider the influence of urban development. As a result of comparison of infiltration rate of the upper and lower parts, the infiltration rate in the lower part is larger than that of the upper part. Thus, the ISS is more available than existing runoff reduction facilities. Results obtained in this study can be provided fundamental data for improvement of existing runoff reduction facilities and practical use of ISS.

CHARACTERIZATION OF NONPOINT SOURCES FROM URBAN RUNOFF

  • Park, Jae-Young;Jo, Young-Min;Oh, Jong-Min
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2000
  • This work was completed in partial fulfillment of an on-going research ot descover the effective management of urban nonpoint sources. The current data was obtained from the area of Shingal, Kyunni-do. The investigation was are predominant soures of storm-runoff load and drainage. As a result of the investigation, the road was found to be most seriously contaminated and a significant potential source deteriorating the quality of streams and lakes in the vicinity of the town. Thus, in could be concluded that an effective and systematic cleaning technique must be developed as soon as possible and be frequently applied to the road.

  • PDF

Urbanization and Quality of Stormwater Runoff: Remote Sensing Measurements of Land Cover in an Arid City

  • Kang, Min Jo;Mesev, Victor;Myint, Soe W.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.399-415
    • /
    • 2014
  • The intensity of stormwater runoff is particularly acute across cities located in arid climates. During flash floods loose sediment and pollutants are typically transported across sun-hardened surfaces contributing to widespread degradation of water quality. Rapid, dense urbanization exacerbates the problem by creating continuous areas of impervious surfaces, perforated only by a few green patches. Our work demonstrates how the latest techniques in remote sensing can be used to routinely measure urban land cover types, impervious cover, and vegetated areas. In addition, multiple regression models can then infer relationships between urban land use and land cover types with stormwater quality data, initially sampled at discrete monitoring sites, and then extrapolated annually across an arid city; in our case, the city of Phoenix in Arizona, USA. Results reveal that from 30 storm event samples, solids and heavy metal pollutants were found to be highly related with general impervious surfaces; in particular, with industrial and commercial land use types. Repercussions stemming from this work include support for public policies that advocate environmental sustainability and the more recent focus on urban livability. Also, advocacy for new urban construction and re-development that both steer away from vast unbroken impervious surfaces, in place of more fragmented landscapes that harmonize built and green spaces.

Development and Applications of Hydrologic Model of Storm Sewer Runoff at Small Urban Area (도시소유역의 유출해석을 위한 수문모형의 개발과 응용)

  • 박승우;이영대
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.19-19
    • /
    • 1990
  • The paper presents the development and applications of physically-based urban runoff analysis model, URAM, which is capable of simulating sewer runoff hydrographs and inundation conditions within a small urban catchment. The model considers three typical flow conditions of urban drainage networks, whichn are overland flow, gutter flow, and conduit flow during a storm. Infiltration, retention storage and flow routing procedures are physically depicted in model. It was tested satisfactorily with field data from a tested catchment having drainage area of 4.91 ha. It was also applied to other urban areas and found to adequately simulate inundation areas and duration as observed during storms. The test results as well as model components are described in the paper.

  • PDF

도시소유역의 유출해석을 위한 수문모형의 개발과 응용 - Development and Applications of Hydrologic Model of Strom Sewer runoff at Small Urban Area

  • 이영대;박승우
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.329-340
    • /
    • 1990
  • The Paper presents the development and applications of physically-based urban runoff analysis model, URAM, which is capable of simulating sewer runoff hydrograhps and inundation conditions within a samll urban catchment. The model coniders three typical flow conditions of urban drainage networks, which are over-land flow, gutter flow, and conduit flow during a storm. Infiltration, retention storage and flow routing procedures are physically depicted in model. It was tested satisfactorily with the field data from a tested catchment having drainage area of 0.049k$m^2$. It was also applied to other urban areas and found to adequately simulate inundation areas and duration as observed during storms. The test results as well as model components are described in the paper.

  • PDF

A Modification of SWMM for a Groundwater Pumping Simulation (지하수 양수 모의를 위한 SWMM의 수정)

  • Lee, Sang-Ho;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.628-635
    • /
    • 2007
  • As the hydrologic cycle is transformed by the expansion of impermeable area as a result of the urbanization, the function of an ecosystem is deteriorated by the transformed hydrologic cycle. In this study, a SWMM code was modified to have a groundwater pumping option about rivers-aquifer interaction to be possible. The modified SWMM was applied to continuous simulations of urban runoff from Hakuicheon watershed and it was used to analyse the effect of a groundwater pumping. The modified SWMM overcame the limitation of the ground subroutine that it only simulate groundwater inflow from ground to rivers. The result of continuous simulation of groundwater pumping is that surface runoff, groundwater runoff and groundwater level are well simulated, and Modified SWMM expressed groundwater runoff by negative number (-) when groundwater level is less than river stage.

Analysis of Nonpoint Source Pollution Runoff from Urban Land Uses in South Korea

  • Rhee, Han-Pil;Yoon, Chun-Gyeong;Lee, Seung-Jae;Choi, Jae-Ho;Son, Yeong-Kwon
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • A long-term nationwide nonpoint-source pollution monitoring program was initiated by the Ministry of Environment Republic of Korea (ME) in 2007. Monitoring devices including rain gauges, flow meters, and automatic samplers were installed in monitoring sites to collect dynamic runoff data in 2008-2009. More than 10 rainfall events with three or more antecedent dry days were monitored per year. More than 10 samples were collected and analyzed per event. So far, five land use types (single family, apartments, education facilities, power plants, and other public facilities) have been monitored 23 to 24 times each. Characterization of the runoff from different land use types will aid unit load estimation in Korea and hopefully in other countries with similar land use. The monitoring results will be reported regularly at national and international levels.

An Analysis of First Flush Phenomenon of 3 Catchment area in Lake Sihwa Watershed during Rainfall-Runoff Events (강우유출수 영향에 따른 시화호 소유역별 유입하천의 오염물질 초기유출현상 분석)

  • Kim, Sea-Won;Oh, Jong-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.475-485
    • /
    • 2011
  • Lake Sihwa has a very unique watershed environment, surrounded by industrial, urban and rural catchment area with different land use. The first flush phenomenon was investigated in 3 catchment area. 4TG, representing the industrial area, shows rapid discharges of highly concentrated pollutants during the early stages of a storm and it is indicating a strong first flush effect. At AS, representing the urban area, the pollutant concentration reached its peak approximately 2~3 hours after the start of storm, which is a strong first flush effect did not appear. JJB and MS represent the rural areas, the PEMC analysis results suggest that highly concentrated pollutants were discharged during the middle and latter stages of a storm, instead of early pollutant runoff due to the effects of rainwater runoff.

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF