• Title/Summary/Keyword: urban wildlife

Search Result 73, Processing Time 0.017 seconds

Analysis of the Priority of Evaluation Criteria and Detailed Index for Selecting Street Trees (가로수 선정 평가기준과 세부지표의 중요도 분석)

  • Kim, Min Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.1
    • /
    • pp.42-53
    • /
    • 2021
  • Street trees improve the cityscape and air quality, reduce heat islands, and create wildlife habitats. Hence, they are essential parts of a city's green infrastructure. Therefore, several trees that are well adapted to the urban environment were planted. However, this caused the problem of simple trees being planted around the world. This study is to select more various street trees. To accomplish this, evaluation criteria and detailed indexes were created. The importance was indicated through the Analytic Hierarchy Process. For commercial roads, the priority of landscape characteristics is 0.2640, and among detailed indicators, the priority of shape is 0.1245. For work roads, the priority of landscape characteristics is 0.2496, and among detailed indicators, the priority of shape is 0.1177. For work roads, the priority of characteristics of civil service is 0.2250, and among detailed indicators, the priority of shape is 0.1177. For general roads, the priority of maintenance characteristics is 0.2479, and among detailed indicators, the priority of shape is 0.1062. For historical and cultural roads, the priority of regional characteristics is 0.3488, and among detailed indicators, the priority of regional characteristics is 0.1643. For ecological roads, the priority of ecosystem characteristics is 0.3488, and among detailed indicators, the priority of the diversity of species is 0.1643. For automotive-only roads, the priority of the ecosystem characteristics is 0.4639, and among detailed indicators, the priority of reducing emissions is 0.1643. This study will provide objective criteria for the selection of street trees.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

Potential Habitat Area Based on Natural Environment Survey Time Series Data for Conservation of Otter (Lutra lutra) - Case Study for Gangwon-do - (수달의 보전을 위한 전국자연환경조사 시계열 자료 기반 잠재 서식적합지역 분석 - 강원도를 대상으로 -)

  • Kim, Ho Gul;Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.1
    • /
    • pp.24-36
    • /
    • 2021
  • Countries around the world, including the Republic of Korea, are participating in efforts to preserve biodiversity. Concerning species, in particular, studies that aim to find potential habitats and establish conservation plans by conducting habitat suitability analysis for specific species are actively ongoing. However, few studies on mid- to long-term changes in suitable habitat areas are based on accumulated information. Therefore, this study aimed to analyze the time-series changes in the habitat suitable area and examine the otters' changing pattern (Lutra lutra) designated as Level 1 endangered wildlife in Gangwon-do. The time-series change analysis used the data on otter species' presence points from the 2nd, 3rd, and 4th national natural environment surveys conducted for about 20 years. Moreover, it utilized the land cover map consistent with the survey period to create environmental variables to reflect each survey period's habitat environment. The suitable habitat area analysis used the MaxEnt model that can run based only on the species presence information, and it has been proven to be reliable by previous studies. The study derived the habitat suitability map for otters in each survey period, and it showed a tendency that habitats were distributed around rivers. Comparing the response curves of the environmental variables derived from the modeling identified the characteristics of the habitat favored by otters. The examination of habitats' change by survey period showed that the habitats based on the 2nd National Natural Environment Survey had the widest distribution. The habitats of the 3rd and 4th surveys showed a tendency of decrease in area. Moreover, the study aggregated the analysis results of the three survey periods and analyzed and categorized the habitat's changing pattern. The type of change proposed different conservation plans, such as field surveys, monitoring, protected area establishment, and restoration plan. This study is significant because it produced a comprehensive analysis map that showed the time-series changes of the location and area of the otter habitat and proposed a conservation plan that is necessary according to the type of habitat change by region. We believe that the method proposed in this study and its results can be used as reference data for establishing a habitat conservation and management plan in the future.