• Title/Summary/Keyword: urban open space

Search Result 293, Processing Time 0.017 seconds

Planting Design Strategy for a Large-Scale Park Based on the Regional Ecological Characteristics - A Case of the Central Park in Gwangju, Korea - (지역의 생태적 특성을 반영한 대형공원의 식재계획 전략 - 광주광역시 중앙근린공원을 사례로 -)

  • Kim, Miyeun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.3
    • /
    • pp.11-28
    • /
    • 2021
  • Due to its size and complex characteristics, it is not often to newly create a large park within an existing urban area. Also, there has been a lack of research on the planting design methodologies for a large park. This study aims to elucidate how ecological ideas can be applied to planting practice from a designer's perspective, and eventually suggest a planting design framework in the actual case, the Central Park in the City of Gwangju. This framework consists of spatial structure of planting area in order to connect and unite the separated green patches, to adapt to the changes of existing vegetation patterns, to maintain the visual continuity of landscape, and to organize the whole open space system. The framework can be provided for the spatial planning and planting design phase in which the landscape designer flexibly uses it with the design intentions as well as with an understanding of the physical, social, and aesthetic characteristics of the site. The significance of this approach is, first that it can maintain ecological and visual consistency of the both existing and introduced landscapes as a whole in spite of its intrinsic complexity and largeness, and second that it can help efficiently respond to the unexpected changes in the landscape. In the case study, comprehensive site analysis is conducted before developing the framework. In particular, wetlands and grasslands have been identified as potential wildlife habitat which critically determines the vegetation patterns of the green area. Accordingly, the lists of plant communities are presented along with the planting scheme for their shape, layout, and relations. The model of the plant community is developed responding to the structure of surrounding natural landscape. However, it is not designed to evolve to a specific plant community, but is rather a conceptual model of ecological potentials. Therefore, the application of the model has great flexibility by using other plant communities as an alternative as long as the characteristics of the communities are appropriate to the physical conditions. Even though this research provides valuable implications for landscape planning and design in the similar circumstances, there are several limitations to be overcome in the further research. First, there needs to be more sufficient field surveys on the wildlife habitats, which would help generate a more concrete planting model. Second, a landscape management plan should be included considering the condition of existing forest, in particular the afforested landscapes. Last, there is a lack of quantitative data for the models of some plant communities.

A Characteristics of Cultural Heritage Landscaping of Jeongnimsa Temple Site in Buyeo from Perspective of Maintenance Project (정비사업을 통해 본 부여 정림사지 문화재 조경의 특성)

  • Kim, Mi-Jin;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.38-49
    • /
    • 2021
  • The maintenance project of the Jeonglimsa temple site started with the objective of restoring the original structure of the temple, however, it was gradually transitioned to a landscaping maintenance project over time that constructs a landscape of the temple area. With paying attention to these facts, this study summarized the characteristics of cultural heritage landscaping of the Jeonglimsa temple site as follows. First, Cultural heritage landscaping is a landscaping act that creates, maintains, and manages landscapes within the spatial scope of the cultural heritage designated under the Cultural Heritage Protection Act and the cultural heritage protection area established around it. It is a work that includes protection and maintenance of the excavated remains, spaces by each function and plans for moving lines, Installation of structures to protect cultural properties, adoption of the facilities and structures for convenience of visitors, and construction of vegetation landscape. Second, the cultural heritage landscaping of the Jeonglimsa temple site has been developed in 5 periods, and these include 'the period of historical site investigation' that the temple name was identified through the designation of cultural assets and excavation investigation by the Japanese rule, 'the construction period of Baekje Tower Park' after the liberation from the Japanese rule, 'the period of Baekje Cultural Area Development Project' designated as a historical site, 'the period of the Comprehensive Development Project for a Specific Area of Baekje Culture',which was proceeded with the establishment of the park and museum instead of restoring the temple building due to the difficulty in gathering the pieces of historical evidence, and 'the period of the Jeonglimsa temple site restoring project', which was designated as a World Heritage Site while restoring the buildings deployment in the Buddhist temple at the time of foundation era of Baekje Dynasty. Third, this study verified the landscape changes of the Jeonglimsa temple site that have been transitioned, for instance, the creation of a commemorative park linked to the outer garden of Buyeo Shrine, the implementation of urban planning of the Japanese colonial era, the creation of a protective environment for the excavated historical structures and temple area, the restoration of building deployment in the Buddhist temple, and the sincerity restoration and utilization of cultural assets. Fourth, the landscape of Jeongnimsa temple site is determined by the subject and scope of cultural property designation, land use, movement lines and pavement, repairing methods of remains, structures, facilities, and vegetation. The characteristics of the cultural heritage landscape of Jeongnimsa Temple were derived, such as creating a procedural landscape considering the expansion of the cultural heritage designation scope, securing authenticity by maintaining relics in consideration of reversibility, creating a vegetative landscape suitable for historical and cultural landscapes, and enhancing the value of cultural heritage enjoyment by providing an open space.

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.