• Title/Summary/Keyword: urban heat island

Search Result 341, Processing Time 0.024 seconds

The Research of Planning Method of Adaption for Old Residential Neighborhoods According to Heat wave and Urban Heat-island Phenomena - Focused on Gun-Ja Dong, Gwang-Jin Gu - (폭염 및 도시열섬현상에 따른 노후 주거지의 적응 계획기법에 관한 연구 - 광진구 군자동 중심으로 -)

  • Kim, Min-Young;Moon, Eun-Seol
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.31-39
    • /
    • 2016
  • Purpose: Urban heat island and Heat wave raise urban temperature and create damage of human life. Growing up as quantitative supply to solve shortage of housing, Urban residential area in Korea have a low rate of nature surface and heavily population makes temperature rise. Most houses in the declined residential area are multi-family rental housing and have many factors congesting housing environment such as narrow in-between space, outdoor staircases, walls and semi-basement floor, which make thermal environment getting worse. Most of the residents in this area are small tenants vulnerable to climate change adaptation, This damage is expected to be even greater. This study focus on multiple dwelling in urban residential area prone to temperature rise and draw temperature adaption method that can apply to multiple dwelling.

Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town - (신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.

Fragmented Urban Heat Islands in Seoul, Korea (분절화된 서울의 도시 열섬 현상)

  • Park, Gwangyong;Kwon, Won-Tae;David A. Robinson
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.48-48
    • /
    • 2004
  • A fragmented urban heat island is observed over the Seoul metropolitan area. Long-term (1996-2003) hourly temperature, wind speed and direction, and precipitation data observed at 26 (51) automatic weather stations (AWS) in Seoul (Gyeonggi prevince) makes it possible to reveal more dynamic spatial and temporal patterns of the urban heat island in this area than previously revealed. (omitted)

  • PDF

Analysis of the Influence of Urban Land Cover Changes on the Thermal Environment of the Atmospheric Boundary Layer Using Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 도시 지표 피복 변화가 대기 경계층 열적 환경에 미치는 영향 분석)

  • Kim, Ji-Seon;Yoo, Jung-Woo;Na, Mun-Soo;Kim, Yong-Gil;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1153-1170
    • /
    • 2020
  • With global warming and the rapid increase in urbanization accompanied by a concentration of population, the urban heat island effects (UHI) have become an important environmental issue. In this study, rooftop greening and permeable asphalt pavement were selected as measures to reduce urban heat island and applied to a simple virtual urban environment to simulate temperature change using ENVI-met. A total of five measures were tested by dividing the partial and whole area application of each measure. The results showed that the temperature range of the base experiment is 33.11-37.11 ℃, with the UTCI comfort level described as strong heat and very strong heat stress. A case applied permeable asphalt has a greater temperature difference than a rooftop greening case, the larger the area where each condition was applied, the greater the temperature change was.

Comparison of Land Surface Temperatures Derived from Surface Emissivity with Urban Heat Island Effect (지표 방사율에 의한 지표온도와 도시열섬효과 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.219-227
    • /
    • 2009
  • Because of urban development and changed land cover types, It is very important to acquire pixel unit of land surface temperature(LST) information when the heat island effect(HIE) of regional area are investigated. The brightness temperature observed by satellite is very useful for assessing the pixel unit of LST distributions for the analysis of thermal environment problems of urban areas. Also, satellite land cover data are very useful to our understanding of surface conditions of study areas. In this study, brightness temperature information of Landsat TM thermal channel was analyzed and compared with land cover information of Jeon-ju city. The atmospheric correction of TM thermal channel carried out to explain for compared LST long term monitoring errors. However, simple estimation and evaluation methods to find a physical relationship between LST from satellite images and in-situ data are compared with reference channel emissivity.

ESTIMATION OF HEAT ISLAND POTENTIAL BASED ON LAND-USE TYPE IN DAEGU

  • Ahn Ji-Suk;Kim Hae-Dong;Kim Sang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.394-397
    • /
    • 2005
  • This study aims to estimate a heat island potential distribution based on the land-use types using LANDSAT/TM(1100LST April 2000) and AWS data in Daegu. The heat island potential is defined as a difference between surface temperature and air-temperature at each place. The study area was selected as about $900k km^2$ square including Daegu metropolitan area. Land-use data obtained by dividing all of Daegu metropolitan area into l-km-square three types of maps were prepared, in the 1 960s, 1970s and 2000s respectively. The types of land-use were divided into 5. Forest and farm lands have been reduced at a wide range during 40 years, most of which changed to urban area. The heat island potential distribution presented a striking contrasts according to land-use types. For example, the heat island potential of urban area was higher than $14^{\circ}$ in comparison to those of water or paddy rice areas.

  • PDF

A Study of the Urban Heat Island in Seoul using Local Analysis System (지역규모 분석 모델을 이용한 서울 도시열섬 특성 연구)

  • Chun, Ji Min;Lee, Seon-Yong;Kim, Kyu Rang;Choi, Young-Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.119-127
    • /
    • 2014
  • A very high resolution weather analysis system (VHRAS) of 50 m horizontal resolution is established based on LAPS. VHRAS utilizes the 3 hourly forecast data of the Unified Model (UM) of the Korea Meteorological Administration (KMA) with the horizontal resolution of 12 km as initial guess fields. The analysis system ingests the automatic weather station (AWS) data as input observations. The analysis system operates every hour for Seoul, Korea region in real time basis. It takes less than 10 minutes for one analysis cycle. The size of grid of the analysis domain is $800{\times}660$, respectively. The analysis results from December 2010 to February 2011 showed that the mean biases of temperature, maximum and minimum temperature were -0.07, 1.6, $0.2^{\circ}C$, respectively. The temperature in the central part of the city revealed relatively higher value than that of the surrounding mountainous areas, which showed a heat island feature. The heat island appears in zonal direction since the central city region is developed along a large river. Along the heat island, the eastern region was warmer than the western region. The warmer temperature in the western part of the heat island was caused by anthropogenic heat change in conjunction with the change of land use. This system will provide more reliable weather data and information in Seoul.

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.

Evaluation of Urban Weather Forecast Using WRF-UCM (Urban Canopy Model) Over Seoul (WRF-UCM (Urban Canopy Model)을 이용한 서울 지역의 도시기상 예보 평가)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Bum-Geun
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.13-26
    • /
    • 2010
  • The Urban Canopy Model (UCM) implemented in WRF model is applied to improve urban meteorological forecast for fine-scale (about 1-km horizontal grid spacing) simulations over the city of Seoul. The results of the surface air temperature and wind speed predicted by WRF-UCM model is compared with those of the standard WRF model. The 2-m air temperature and wind speed of the standard WRF are found to be lower than observation, while the nocturnal urban canopy temperature from the WRF-UCM is superior to the surface air temperature from the standard WRF. Although urban canopy temperature (TC) is found to be lower at industrial sites, TC in high-intensity residential areas compares better with surface observation than 2-m temperature. 10-m wind speed is overestimated in urban area, while urban canopy wind (UC) is weaker than observation by the drag effect of the building. The coupled WRF-UCM represents the increase of urban heat from urban effects such as anthropogenic heat and buildings, etc. The study indicates that the WRF-UCM contributes for the improvement of urban weather forecast such nocturnal heat island, especially when an accurate urban information dataset is provided.

Evaluation of Thermal Environment Improvement Effect from Public Design Improvement Project on the Urban Street Space (도시가로공간의 공공디자인 개선사업에 따른 열환경 개선 효과 평가)

  • Baek, Sang-Hun;Shimizu, Aki;Kim, Hak-Yoon;Jung, Eung-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1105-1114
    • /
    • 2011
  • In this study, thermal environment improvements throughout public design improvement project on the urban street space were compared and evaluated. Thermo-Render 3.0, 3D-CAD based thermal environment simulation program, had been used for thermal environment improvement evaluations. Followings are the results. First, clayey blocks which have low heat transfer rate and cool island effect by trees and roof gardens brought cooling effects for buildings and surface of streets. Seconds, MRT values showed low levels because of low radiant mulching materials. Thirds, roof gardens contributed to reduce heat island effect since HIP levels were affected by decreasing heat storage effect of buildings from roof gardens. As a result, reducing heat storage effect throughout selecting and arranging proper materials which would not increase heat island potentials should be performed to improve heat island effects.