• Title/Summary/Keyword: urban green island

Search Result 122, Processing Time 0.021 seconds

A Preliminary Analysis of the Impact of Urban Green Spaces on the Urban Heat Island Effect Using a Temperature Map

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.675-680
    • /
    • 2010
  • Temperature is one of the main issues in climate change, and the urban heat island effect in highly developed urban areas is an important issue that we need to deal with. This study analyzed the extent of the cooling effects of urban green spaces. The study used a surface temperature map of Seoul. It found that the cooling effects of green space was observed within limited distances, although it varied a little depending on the parks investigated. The cooling effect distance ranged from 240m to 360m, averaging about 300m. It also found the size of an urban green space does not make much difference in cooling the surrounding areas. Although further investigation with diverse urban areas should be conducted on this matter, the results did imply that many small green spaces in the neighborhood are more effective than a single big green space in mitigating the heat island effects of cities.

A Study on Green Net-Work Construction for Urban Heat Island Mitigation in Dalseo District, Daegu Metropolitan City (도시열섬현상 저감을 위한 그린네트워크 구축 방안에 관한 연구 - 대구광역시 달서구를 대상으로 -)

  • Kim, Gi Ho;Kim, Su Bong;Jeong, Eung Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.527-535
    • /
    • 2004
  • As urbanization has been expanded in Korea, open spaces, such as urban parks and public sites, have been utilized for other uses, and then this bring out environmental changes for the worse. It is expected that these changes become more serious problems due to overpopulation, increasing individualism, and development of transportation. This research base on the consideration of connecting between decreasing urban green spaces and distributed green sites so as to build the substantial plan for the Green Network construction for urban heat island mitigation in Dalseo district, Daegu Metropolitan City. The result were as follow; 1) Connecting existing natural sites to the remained parks green zone made an Ideal form of Green-Network system. 2) Some school sites were selected for usable open spaces in order to build Green-Network system, and the plan connecting together with exist natural sites was suggested. 3) Moreover, the scheme of planting on the road spaces for connecting green spaces was proposed. 4) The devices of planting on the urban riverside for enhancing the role of urban stream to form green network was conceived.

An Analysis of Thermal Environment Change according to Green Roof System (옥상녹화 조성에 따른 열환경 변화분석)

  • Park, Ji-Young;Jung, Eung-Ho;Kim, Dae-Wuk;Cha, Jae-Gyu;Shimizu, Aki
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.11a
    • /
    • pp.100-103
    • /
    • 2009
  • The impermeable area on the surface of city has been increased as buildings and artificial landcover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural eco system. There arise the environmental problems peculiar to city including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate the heat reduction effect according to the development of green roof system and to quantify the heat reduction effect by analyzing through simulation the heat environment before and after green roof system. For thermal environment analysis, Thermo-Render 3.0 was used that was developed by Tokyo Industrial College to simulate. The simulation showed that the heat island index before and after the development of tree-planting on rooftop changed maximum $0.86^{\circ}C$ and the surface temperature changed about $20^{\circ}C$. Only with lawn planting, heat reduction effect was great and it means that the green roof system in low-management-light-weight type is enough to see effect. The simulation identified that only lawn planting for green rooftop brought such difference and could lower the heat island index at a narrow area. It is judged that application of green roof system to wider areas might relieve urban heat island phenomenon positively.

  • PDF

Variation of Green Space Cooling Effect Influenced by Its Composition and Surroundings in Suwon City (수원시 녹지 조성 및 주변 환경에 따른 녹지 냉각 효과의 변화)

  • Seung Yeon Lee;Seong Woo Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.176-186
    • /
    • 2023
  • Urban Heat Island (UHI) is caused by an energy imbalance in urban areas, where building design and land cover contribute to its amplification. To mitigate UHI, increasing green space is one of the well known and the most effective approach. This study aims aimed to identify specific components of green spaces that lower temperatures and demonstrate the cooling effects based on their size and composition. Forests within green spaces have had a greater impact on temperature reduction due to shading and blocking solar radiation. Although lakes also contributed to temperature reduction, the effect to cooling intensity was not significant. The cooling distance does not depended on green space size or composition. The study emphasizes that initial temperature has a strongerinfluence on cooling intensity than green space size, highlighting the importance of vegetation type within green spaces to achieve a cooling effect. These findings provide valuable insights for urban planning and the design of green spaces to mitigate the effects of the urban heat island.

Characteristics of Volatile Organic Compounds (VOCs) Concentration by Type of Urban Green Space - focused on Dongdaemun-gu, Seoul, Korea - (도시녹지 유형에 따른 휘발성유기화합물 농도 특성 - 서울시 동대문구를 중심으로 -)

  • Jo, Yeseul;Park, Sujin;Roh, Gwan Pyeong
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.330-339
    • /
    • 2018
  • Objectives: The occurrence characteristics of BTEXS and phytoncides were investigated by type of urban forest. Methods: Four types of urban green space (Hongneung Forest, Mt. Chunjang, residential park, and traffic island) and Gwangneung Forest were selected. Monitoring of phytoncides and BTEXS was conducted considering the activity times of urban residents (five times per day) using a Tenax TA tube and suction pump in June 2017 (one day). Results: Phytoncide concentrations were ranked as Gwangneung Forest>Hongneung Forest>Mt. Cheonjang>traffic island>residential park. Relatively high concentrations of phytoncides were also identified in the urban forest. There was no significant difference between Gwangneung Forest and the urban forest. BTEXS concentrations were ranked as traffic island>residential park>Hongneung Forest>Gwangneung Forest>Mt. Cheonjang. Traffic island and residential park showed high levels of BTEXS depending on the inflow of vehicles. The difference in concentration by time was significant for the traffic island in particular. Pollutant levels in Hongneung Forest were as low as in Gwangneung Forest. Conclusion: The concentrations of phytoncides and BTEXS were different by types of urban green space, and the potential for health and hygiene of urban forests were able to be investigated. This study is expected to provide as basic data for the creation of urban forest spaces in the future.

A Consideration of the Correlation Between the Change of Surface Temperature on the Roof and the Adoption of the Green Roof vs Non Green Roof -Application in DaeJeon Area- (옥상녹화와 비 옥상녹화 표면의 온도변화 상관관계 고찰 -대전지역을 중심으로-)

  • Lee, Eung-Jik;Kim, Jun-Hui
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.134-140
    • /
    • 2012
  • With rapid modernization and industrialization, many urban areas are becoming overcrowded at a rapid pace and such urban ecological problems as heat island effect are becoming serious due to the reduced green zones resulted from the indiscriminate development. To solve this problem, ecological park, constructed wetlands, and greening on the elevation, balcony, and roof of a building that have the structure and function very close to the state of nature are currently being promoted at the urban or regional level. Especially green roof will be able to not only provide the center of a city with a significant portion of green area but also help to relive heat island effect and improve micro climate by preventing concrete of a building from absorbing heat. According to a recent study, the temperature of green roof in the summer season shows a lower temperature than the outdoor temperature, but inversely the concrete surface shows a higher temperature. Accordingly, this study measured the surface temperature of buildings with green roof in Daejeon area in order to determine how the green roof system would have an impact on the distribution of surface temperature and did a comparative analysis of the distribution of the surface temperature of green roof vs non-green roof based on these theoretical considerations. As a result, it was found that the surface temperature of green roof was lower by $4{\sim}7^{\circ}C$ than that of non-green roof. This is expected to contribute to the mitigation of urban heat island effects.

An Analysis of Rational Green Area Ratio by Land Use Types for Mitigating Heat-Island Effects (도시열섬완화를 위한 토지 이용 유형별 합리적 녹지율 분석)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • The purpose of this study is to analyze reasonable green area ratios for mitigating urban heat island considering various land use types. Land uses of 5 types such as single residential, multi residential, commercial area, public facility, and industrial area were considered. Green areas were extracted from the tree attribution of land cover. Effect of urban heat island was analysed by the surface temperature of ASTER thermal infrared radiance scanned daytime and nighttime. Mitigation effect of green area at daytime was higher than nighttime. Surface temperature of green area was low in single residential at daytime. But the difference of surface temperature by each land use type was small. The effect of surface temperature mitigation of green area was lower in industrial area. The results of reasonable green area ratios for mitigating urban heat island indicate that surface temperature was the lowest with green area ratio of 40~50% in single residential, multi residential, and commercial area at daytime. Surface temperature of nighttime was not changed much by green area ratios. Therefore, the results of this study will be suggested in urban development planning to construct effectively green area for mitigating urban heat island.

Effect of Building and Green on Outside Thermal Environment (건물과 녹지배치가 외부 열환경 변화에 미치는 영향 분석)

  • Son, Won-Tug;Choi, Hyun-Sang;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • Significant air temperature increases in urban areas are known as the heat island phenomenon in a global scale. Therefore, we use CFD simulation in order to analyze quantitative effects by placing a Building and Green on the heat island phenomenon in urban area. The present study quantitatively analyzes the Urban Heat Island Effects, Outdoor air temperature, and Humidity and air flow.

  • PDF

Cool Island Intensity in a Large Urban Green in Downtown Daegu: Seasonal Variation and Relationship to Atmospheric Condition (대구 도심에 위치한 대규모 녹지공간의 냉섬 강도: 계절변화와 기상조건에의 관련성)

  • Park, Myong-Hee;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • Cool island intensity urban green space was investigated based in Dalsung Park, that is one of the largest parks in Daegu. Cool island intensity(CII), which is defined as the temperature difference between the green space and its surrounding built-up areas, shows time variations. A through-year measurement(2008-2009) of ground level air temperature revealed seasonal variation and relationship to the atmospheric condition of CII. The temperature variation in the park and the reference downtown Daegu was as same order as CII. The noontime CII is larger in summer than that in winter due to the leaf fall of the park trees. On the other hand, seasonal variation of nighttime CII is not so clear. The nighttime CII was larger under the stable atmosphere.

Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town - (신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.