• Title/Summary/Keyword: urban excavation

Search Result 285, Processing Time 0.025 seconds

A Study of Earth Pressure and Deformation acting on the Flexible Wall in Soft Soil (연약지반 흙막이벽에 작용하는 토압 및 변위에 관한 연구)

  • Park, Yeong-Mog;Chung, Youn-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • Recently the deep and large excavations are performed near the existing buildings in urban areas for the practical use of underground space. The earth pressure due to the excavation are varied according to the conditions of ground, the depth of excavation, the construction methods, and the method of supporting the earth pressure etc.. In this study, not only the behavior of axial load and distribution of earth pressure on the flexible wall according to stage excavation depth but also magnitude and distribution of lateral deformation, and the equivalent earth pressure from strut axial loads were analyzed by the results measured from instruments such as, load cells, strain gauges, and in-situ inclinometer, on the field of subway construction. According to the results of this study in the case of stage excavation the earth pressure of soft clayey soil is compounded with Terzaghi-Peck and Tschebotarioff.

A Case Study of Deep Shaft Blasting for Reducing Ground Vibration in Urban Area (도심지의 대심도 수직구 발파에서 지반진동저감 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Jung, Min-Sung;Lee, Hyeung-Jin;Na, Gyeong-Min
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.15-26
    • /
    • 2021
  • Domestic electronic detonators are used widely in many quarry and construction sites since its launch at 2013. In the case of SOC projects conducted in the city, most of them are designed in high-depth to reduce complaints. The high-depth excavation needs a long construction period and huge cost for building shaft and ventilation hole. Mechanical excavation method is applied when safety things are located nearby the site. Solidity of rock and machine's performance affect on the method's efficiency. So as the efficiency is getting lower, the construction period is extended, and the cost is increases as well. This case study is about changing the machine excavation method to the blasting method which is electronic detonator applied at the shaft construction site in the city. This is an example of using electronic detonators on the construction site in reducing blast-noise and vibration while meeting environmental regulatory standards.

A Case Study on the Effect of Soil Improvement on Anchor Bond Zone (지반개량에 의한 Anchor 정착부 개선효과 사례연구)

  • Kim, Tae-Seob;Song, Sang-Ho;Cho, Kyu-Wan;Lee, Jae-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF

Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection (경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.

Comparison of measured values and numerical analysis values for estimating smart tunnel based groundwater levels around vertical shaft excavation (수직구 굴착시 스마트 터널기반 지하수위 현장계측과 수치해석 비교 연구)

  • Donghyuk Lee;Sangho Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.153-167
    • /
    • 2024
  • Recently the ground settlement has been increasing in urban area according to development. And, this may attribute a groundwater level drawdown. This study presents an analysis of groundwater level drawdown for circular vertical shaft excavation of 「◯◯◯◯ double track railway build transfer operate project」. And, in-situ monitoring data and numerical analysis were compared. So, if we examine the groundwater level drawdown in design, ground conditions should be applied so that the site situation can be reflected. And, groundwater level should be considered a seasonal measurement in order to apply the appropriate groundwater level. It was confirmed a similar predicted value to groundwater level drawdown of in-situ monitoring data.

A study on the construction and urban space of Xuzhou(徐州) Castle during the Ming and Qing Dynasties (명청시기 서주성(徐州城)의 건설과 도시공간 연구)

  • Wu, Tian-QI;Han, Dong-Soo
    • Journal of architectural history
    • /
    • v.31 no.2
    • /
    • pp.51-65
    • /
    • 2022
  • Seoju is one of the nine weeks of the ancient period, and according to literature records, the construction of Seojuseong Fortress has a long history of 2573. This is the land of Oseongtong-gu, a political and military hub, and flood disasters have frequently led to frequent reconstruction of fortresses. In particular, it is also an important place to show that the function of the fortress is defensive and has a function of preventing floods. This study analyzed the shape of Seojuseong Fortress and the characteristics of urban spaces in the Myeongcheong period through excavation data and literature data.

Time-lapse Geophysical Survey Analysis for Field-scale Test bed of Excavation Construction (실규모 굴착 시험장에서의 시간경과 물리탐사 자료 분석)

  • Shin, Dong Keun;Song, Seo Young;Kim, Bitnarae;Yoo, Huieun;Ki, Jung Seck;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.137-151
    • /
    • 2019
  • Geophysical exploration techniques are effective for monitoring changes in the ground condition around the excavation project to prevent subsidence risks during excavation work, therefore, improving analysis techniques is required for applying and supplementing various geophysical exploration technologies. In this study, a field-scale on-site test was conducted to detect possible ground subsidence hazards and areas of relaxation zone that may occur during excavation work and due to underground water level changes. In order to carry out the field test, a real-scale excavation test bed was constructed and the geophysical exploration methods, such as electrical resistivity survey and multi-channel analysis of surface wave (MASW) survey for urban sites condition, have researched for optimal geophysical exploration parameter, design and correlation analysis between the results by reviewing the validity of each individual geophysical exploration and modeling. The results of this study showed the impact of each geophysical exploration on the relaxation zone and, in particular, the location of the underground water surface and the effects of excavation were identified using electrical resistivity survey. Further research on modeling will be required, taking into account the effects of excavation and groundwater.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.

A Study on the Characteristics of Blasting Vibration and Breaker Vibration by Rock Excavation (암반굴착에 따른 발파진동과 브레이커진동의 특성에 관한 연구)

  • Lim, Han-Uk;Park, Hyeon-Seong
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.107-117
    • /
    • 2002
  • The blast works for open cuts and underground constructions near urban areas have recently increased complaint of ground vibration, air blast and fly rock. In order to reduce these problems, it is necessary to develop more cautious blasting, or non-blast excavation methods by mechanical power. For these breaker workings instead of blast are sometimes adopted. To compare the characteristics of blast vibration with breaker vibration, the level, range of frequency and spectrum amplifications of each vibration were studied.

  • PDF