• Title/Summary/Keyword: urban effects

Search Result 1,841, Processing Time 0.028 seconds

Stability Analysis and Reliability Evaluation of the Pretensioned Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 신뢰도 분석)

  • 김홍택;강인규;박사원;고용일;권영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.105-127
    • /
    • 1999
  • Application of the soil nailing method is continuously extended in maintaining stable excavations and slopes. Occasionally, however, ground anchor support system may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then, could play important roles in reducing deformations mainly in an upper part of the nailed-soil excavation system as well as improving local stability. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the pretensioned soil nailing system. Also proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. The predicted results are compared with the limited measurements obtained from the excavation site constructed by using the pretensioned soil nails. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and FLAC$^{2D}$ program analysis.s.

  • PDF

Stability analysis of an existing utility tunnel due to the excavation of a divergence tunnel emerging from double-deck tunnel (복층터널의 분기터널 굴착에 따른 지하 공동구의 안정성 분석)

  • Nam, Kyoung-Min;Choi, Min-ki;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.231-248
    • /
    • 2017
  • Government plans to construct a double-deck tunnel under a portion of Gyeongbu Expressway that will solve traffic problems and could also be used as a flood storage facility. Divergence tunnels connect the main tunnel to the urban areas and their construction effects on adjacent structures at shallow depth need to be analyzed. This study primarily includes the numerical analysis of construction effects of divergence tunnels on utility tunnels. The utility tunnel was analyzed for three cases of volume loss applied to the divergence tunnel and two cases of the angle between main tunnel and divergence tunnel ($36^{\circ}$ and $45^{\circ}$). The results show that the more the volume loss was applied and the shorter the distance was between utility tunnel and divergence tunnel, the more the utility tunnel was affected in terms of induced displacements, angular displacement and stability. The worst scenario was found out to be the one where the angle between main tunnel and divergence tunnel was $36^{\circ}$ and the distance between divergence tunnel and utility tunnel was 10 m, resulting in the largest displacement and differential settlement at the bottom of the utility tunnel. A relationship between the angular displacement and the distance to diameter ratio was also established.

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

Elastic Wave Modeling Including Surface Topography Using a Weighted-Averaging Finite Element Method in Frequency Domain (지형을 고려한 주파수 영역 가중평균 유한요소법 탄성파 모델링)

  • Choi, Ji-Hyang;Nam, Myung-Jin;Min, Dong-Joo;Shin, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • Abstract: Surface topography has a significant influence on seismic wave propagation in a reflection seismic exploration. Effects of surface topography on two-dimensional elastic wave propagation are investigated through modeling using a weighted-averaging (WA) finite-element method (FEM), which is computationally more efficient than conventional FEM. Effects of air layer on wave propagation are also investigated using flat surface models with and without air. To validate our scheme in modeling including topography, we compare WA FEM results for irregular topographic models against those derived from conventional FEM using one set of rectangular elements. For the irregular surface topography models, elastic wave propagation is simulated to show that breaks in slope act as a new source for diffracted waves, and that Rayleigh waves are more seriously distorted by surface topography than P-waves.

Study of Benefit Characteristics for Low Impact Development (LID) Facilities demonstrated in Seoul Metropolitan (서울시 저영향개발(LID) 시범 시설에 대한 편익 특성 연구)

  • Lee, Seung Won;Kim, Reeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.299-308
    • /
    • 2016
  • Seoul metropolitan has established a vision as 'Healthy water-cycle city' to resolve urban water-environmental deterioration. And it established administrative structure to expand Low Impact Development (LID) facilities to recover aggravated water-cycle and water-environment. Therefore, various LID facilities are constructed and operated, however, benefit analytic plans for systematic valuation are insufficient. In this study, to analyze economic, environmental and social benefits of LID facilities, contents for benefit analysis were selected and categorized as water, energy, air quality and climate changes. As a result of quantification and valuation to the beneficial effects, LID facilities showed the total benefit as 1,191~3,292 won/yr. Characteristics of benefit distribution by analysis contents were various reflecting functional characteristics of each LID facility (Water: 30~90%, Energy: 4~44%, Air quality: <1~2%, Climate change: 5~22%). As a result of Triple Bottom Line analysis, economic benefit showed the greatest portion as 75~90%. As further studies, suggested benefit assessment plans for each LID facility should be applied to inter-connected LID systems on complex-scaled area, and synergy effects by various LID systems would be evaluated such as prevention of heat island and flood disasters.

Optimum Allocation Modelling of Rural Facilities by Decision-Making Technique - With Special Reference to Agricultural-cum-Industrial Complex- (의사결정기법을 이용한 농촌지역시설 적정입지선정 모델 - 농공단지를 중심으로 -)

  • Choe, Su-Myeong;Kim, Yeong-Ju;Hwang, Han-Cheol
    • Journal of Korean Society of Rural Planning
    • /
    • v.4 no.1
    • /
    • pp.98-107
    • /
    • 1998
  • For efficient development of rural facilities, choice of their optimum locations would be an important issue, however, existing research works concentrated much more an allocation policy of urban industrial complex and public facilities than rural ones. In this study, because agricultural-cum-industrial complex has been the most widely developed representative one of rural facilities, it was selected as a case study facility. As a pre-study to system development, existing governmental location-decision system was checked and interviewing survey carried out to find out on-spot problems. And, being based on literature review and survey analysis results, 4-step optimum locational decision model was developed , formulation of locational goal system, ranking tabulation on components, determination of significance values of components, calculation of component scores. Finally, through the case study works on 3 sites, system applicability was checked, Considering together the simplicity problem of existing guidelines and the interviewing survey results favoring the diversified viewpoints, it would be necessary to develop multifaceted support system for locational decision making. 3-tier classification steps from the higher, middle to lower one were used and their underpinning viewpoints were sorted as on regional development, entrepreneurship, spatial rationality, from which a tentative locational goal system was formulated. Through the expert group checking, final locational goal system was determined having 3 of the higher classification items, 7 of the middle ones, 23 of the lower ogles. For ranking tabulation, 3 types of ranking criteria were arranged which were based on statistical analysis using mean and standard deviation(Type I ), its existence or not 1 good or not(Type E ), and the others(Type E ). From the significance evaluation results, regional development and entrepreneurship aspects were valued much higher than spatial rationality aspect. And, in the middle step, items as spread effects of regional economy, accessibility and social potentialities were highly valued while infrastructural development level and natural condition being low. The application results of the system to 3 case study total. However, the detailed ones differed among study the influencing effects on regional economy, and contrast greater the infrastructural development level. Conclusively, final evaluation values well represented the characteristics of each area. If this system be complemented and applied comprehensively by the successive studies, it would be developed to a general model of locational decision supporting system for rural facilities.

  • PDF

Effects of Thermal and Electrical Conductivity of Al(OH)3 Functionalized Graphene/Epoxy Composites by Simple Sol-Gel Method (졸-젤 법을 이용한 Al(OH)3 처리된 그래핀/에폭시 복합체의 열 및 전기전도 특성 분석)

  • Kim, Ji-Won;Im, Hyun-Gu;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Functionalized graphene/epoxy composites were prepared to miprove thermal conductivities of epoxy composites and to maintain electrical insulating property. Graphene oxide (GO) was prepared using Hummers method, and then GO was reacted with aluminum isopropoxide to functionalize $Al(OH)_3$ layer onto GO surface by a simple sol-gel method (Al-GO). GO and Al-GO were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The analyses confirm that GO was coated with a large and dense coverage of $Al(OH)_3$. GO and Al-GO (1 and 3 wt%) were embedded in bisphenol A (DGEBA) to investigate the effects of electrical insulating property. Electrical resistivity showed that Al-GO had better insulating property than GO. Further, the thermal conductivity of GO and Al-GO/epoxy composites was higher than that of neat epoxy resins. In particular, the thermal conductivity of Al-GO/bisphenol F (DGEBF) improved by 23.3% and Al-GO/DGEBA enhanced by 21.8% compared with pure epoxy resins.

Study for Aerodynamic and Aeroacoustic Characteristics of Multirotor Configurations Considering the Wake Interaction Effect (멀티로터형 비행체의 후류 상호작용을 고려한 공력 및 공력소음 해석 연구)

  • Ko, Jeongwoo;Kim, Dong Wook;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.469-478
    • /
    • 2019
  • Multirotor configurations such as VTOL and urban air mobility have been focused on today due to the high maneuverability. Aerodynamic and aeroacoustic characteristics of multirotor have much difference to those of a single rotor. In this study, a numerical analysis based on the free wake vortex lattice method is used for identifying the wake interaction effect. In order to compare the various configurations and operating conditions, the effects of the spacing between the rotors in hovering flight and the effects of the advancing ratio and the formation in forward flight are discussed. In the hovering flight, the unsteady loading of multirotor changes periodically and loading fluctuation increases as decreasing the spacing. It causes the variation in unsteady loading noise and the noise directivity pattern. In the forward flight, the difference in loading fluctuation and noise characteristics are observed according to the diamond and square formation of rotors. By comparing with results of single rotor analysis, multirotor configurations have different directivity pattern and amplitude of loading noise according to the location of each rotor. As a result, wake interaction effect becomes a highly important factor for aerodynamic and aeroacoustic analysis according to multirotor configurations and operating conditions.

Time-lapse Geophysical Survey Analysis for Field-scale Test bed of Excavation Construction (실규모 굴착 시험장에서의 시간경과 물리탐사 자료 분석)

  • Shin, Dong Keun;Song, Seo Young;Kim, Bitnarae;Yoo, Huieun;Ki, Jung Seck;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.137-151
    • /
    • 2019
  • Geophysical exploration techniques are effective for monitoring changes in the ground condition around the excavation project to prevent subsidence risks during excavation work, therefore, improving analysis techniques is required for applying and supplementing various geophysical exploration technologies. In this study, a field-scale on-site test was conducted to detect possible ground subsidence hazards and areas of relaxation zone that may occur during excavation work and due to underground water level changes. In order to carry out the field test, a real-scale excavation test bed was constructed and the geophysical exploration methods, such as electrical resistivity survey and multi-channel analysis of surface wave (MASW) survey for urban sites condition, have researched for optimal geophysical exploration parameter, design and correlation analysis between the results by reviewing the validity of each individual geophysical exploration and modeling. The results of this study showed the impact of each geophysical exploration on the relaxation zone and, in particular, the location of the underground water surface and the effects of excavation were identified using electrical resistivity survey. Further research on modeling will be required, taking into account the effects of excavation and groundwater.

Spatial Variation in Land Use and Topographic Effects on Water Quality at the Geum River Watershed (토지이용과 지형이 수질에 미치는 영향의 공간적 변동성에 관한 연구 - 금강 권역을 중심으로)

  • Park, Se-Rin;Choi, Kwan-Mo;Lee, Sang-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.94-104
    • /
    • 2019
  • In this study, we investigated the spatial variation in land use and topographic effects on water quality at the Geum river watershed in South Korea, using the ordinary least squares(OLS) and geographically weighted regression (GWR) models. Understanding the complex interactions between land use, slope, elevation, and water quality is essential for water pollution control and watershed management. We monitored four water quality indicators -total phosphorus, total nitrogen, biochemical oxygen demand, and dissolved oxygen levels - across three land use types (urban, agricultural, and forested) and two topographic features (elevation and mean slope). Results from GWR modeling revealed that land use and topography did not affect water quality consistently through space, but instead exhibited substantial spatial non-stationarity. The GWR model performed better than the OLS model as it produced a higher adjusted $R^2$ value. Spatial variation in interactions among variables could be visualized by mapping $R^2$ values from the GWR model at fine spatial resolution. Using the GWR model, we were able to identify local pollution sources, determine habitat status, and recommend appropriate land-use planning policies for watershed management.