• Title/Summary/Keyword: urban climate

Search Result 904, Processing Time 0.028 seconds

A Comparative Study on Mapping and Filtering Radii of Local Climate Zone in Changwon city using WUDAPT Protocol (WUDAPT 절차를 활용한 창원시의 국지기후대 제작과 필터링 반경에 따른 비교 연구)

  • Tae-Gyeong KIM;Kyung-Hun PARK;Bong-Geun SONG;Seoung-Hyeon KIM;Da-Eun JEONG;Geon-Ung PARK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.78-95
    • /
    • 2024
  • For the establishment and comparison of environmental plans across various domains, considering climate change and urban issues, it is crucial to build spatial data at the regional scale classified with consistent criteria. This study mapping the Local Climate Zone (LCZ) of Changwon City, where active climate and environmental research is being conducted, using the protocol suggested by the World Urban Database and Access Portal Tools (WUDAPT). Additionally, to address the fragmentation issue where some grids are classified with different climate characteristics despite being in regions with homogeneous climate traits, a filtering technique was applied, and the LCZ classification characteristics were compared according to the filtering radius. Using satellite images, ground reference data, and the supervised classification machine learning technique Random Forest, classification maps without filtering and with filtering radii of 1, 2, and 3 were produced, and their accuracies were compared. Furthermore, to compare the LCZ classification characteristics according to building types in urban areas, an urban form index used in GIS-based classification methodology was created and compared with the ranges suggested in previous studies. As a result, the overall accuracy was highest when the filtering radius was 1. When comparing the urban form index, the differences between LCZ types were minimal, and most satisfied the ranges of previous studies. However, the study identified a limitation in reflecting the height information of buildings, and it is believed that adding data to complement this would yield results with higher accuracy. The findings of this study can be used as reference material for creating fundamental spatial data for environmental research related to urban climates in South Korea.

Projections of Future Summer Weather in Seoul and Their Impacts on Urban Agriculture (미래 서울의 여름날씨 전망과 도시농업에의 영향)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.182-189
    • /
    • 2015
  • Climate departure from the past variability was projected to start in 2042 for Seoul. In order to understand the implication of climate departure in Seoul for urban agriculture, we evaluated the daily temperature for the June-September period from 2041 to 2070, which were projected by the RCP8.5 climate scenario. These data were analyzed with respect to climate extremes and their effects on growth of hot pepper (Capsicum annuum), one of the major crops in urban farming. The mean daily maximum and minimum temperatures in 2041-2070 approached to the $90^{th}$ percentile in the past 30 years (1951-1980). However, the frequency of extreme events such as heat waves and tropical nights appeared to exceed the past variability. While the departure of mean temperature might begin in or after 2040, the climate departure in the sense of extreme weather events seems already in progress. When the climate scenario data were applied to the growth and development of hot pepper, the departures of both planting date and harvest date are expected to follow those of temperature. However, the maximum duration for hot pepper cultivation, which is the number of days between the first planting and the last harvest, seems to have already deviated from the past variability.

Analysis of NO2 over the Korean Peninsula from Ozone Monitoring Instrument Satellite Measurements (위성 (OMI)을 활용한 한반도 지역 NO2 분석)

  • Kim, Deok-Rae;Choi, Won-Jun;Lee, Joon-Suk;Kim, Seung-Yeon;Hong, Jun-Suk;Song, Chang-Keun;Lee, Jae-Bum;Hong, You-Deog;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • Monitoring of climate change and atmospheric environment by satellite measurements has been increased in recent years. In this study, nitrogen dioxide ($NO_2$) measurements from Ozone Monitoring Instrument (OMI) were compared with surface measurements over the Korean peninsula. $NO_2$ from OMI measurements showed high values and also showed seasonal variations such as high concentration in winter and low in summer over metropolitan areas while $NO_2$ concentration at national background station was low and did not clearly show seasonal variations. Surface measurements showed similar temporal and spatial variations to those of satellite measurement. The comparison between satellite measurements and surface measurements showed that the correlation between them was higher in urban area (r=0.64 at Seoul and r=0.63 at Daegu) than in national background stations (r=0.37 at Jeju) because the concentration in urban area was relatively high so that the variation of $NO_2$ concentration could be detected better than at national background stations by satellite. Satellite can effectively measure the emission and transport of pollutants with no limitations in spatial coverage.

Analysis of the Surface Urban Heat Island Changes according to NewTowns Development and Correlation with Urban Morphology (신도시 개발에 따른 표면 열섬현상 변화분석 및 도시 형태와의 상관관계)

  • Kyungil Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.921-932
    • /
    • 2023
  • Land cover change due to urban population concentration and urban expansion can cause various environmental problems such as urban heat islands. In particular, New towns are considered an appropriate study site to analyze changes in urban climate due to rapid urbanization in a short period. This study used Landsat satellite imagery to compare and analyze the land cover changes before and after the development of two new towns with different plans, and the resulting changes in surface urban heat island (SUHI) phenomena. Correlation analysis was also conducted between urban structural features that may affect the SUHI intensity. The results of the analysis confirm the rapid change in land cover as new town development progresses and the direct intensification of the SUHI phenomenon. This study confirms the differences in SUHI caused by different urban plans and suggests the need for three-dimensional urban planning to improve the thermal environment.

Planning of Neighborhood Parks for the Disaster Prevention in Jecheon City (제천시의 방재형 도시 근린공원 조성 계획)

  • Lee, Ai-Ran
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.296-304
    • /
    • 2015
  • The rapid increase in the number of climate disasters combined with the scale of change and the diversification of natural disasters require a radical solution. In particular, the urban space is more complex, therefore we need to establish measures for disaster response and how to react to damaged infrastructure based on the phenomenon of an increase in the urban population and the impermeable layer being extended. The social problems related to the economic burden of land purchase and the securing of a disaster prevention system can be solved simultaneously by introducing the park system for disaster reduction into the public land of the green space in the city. The local government has recently adapted diverse systems of disaster mitigation and carried out pioneer projects according to the guidelines for the construction of the urban park for disaster prevention published by the Ministry of Land, Infrastructure and Transport. The purpose of this study is to propose a composition model for neighborhood parks to prevent disaster through urban green spaces which has the functions of water management and biotope conservation. The result of this study will contribute to utilize the climate change adaptation model for living area neighborhood parks in the existing urban structure.

Examination of Factors Influencing Urban Higher Temperature using E-GIS DB (E-GIS DB를 활용한 도시 고온화 영향인자 검토)

  • Kim, Keum-Ji;Yoko, Kamata;Lee, Jung-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.44-49
    • /
    • 2009
  • In this study, we performed urrban climate simulation how both the factor of environmental land and artificial factors influence on the formation of urban temperature. With deducing quantitative data, this study could get more accurate results of the urban temperature using urban climate simulation system. In the case of natural land cover, it appeared that there are effects on the lowering temperature and the lower temperature rate appeared in the water land cover on the whole. This is considered as temperature in water land was low because of the characteristics of water land having evaporation latent heat was high and convective sensible heat was low. In case of building which has building coverage ratio, 5% with 10 floors and building coverage ratio, 15 % with 6 floors, it appears that the temperature in the water land is $33.6^{\circ}C$. In case of building coverage ratio 5%, temperature dropped when buildings has more than 4 stories. This is regarded as the size of building is bigger, the temperature dropped in relatively because of the fluctuation of the rate of solar heat from the land. At the present time, the urban temperature are higher because of various artificial factors in the city. With these results, this study supposed to be a basies of the future studies for considering both the composition of building coverate ratio and floor plan.

  • PDF

Analyzing Carbon-Neutral Campus Development Measures through Recognition Analysis of Students - Focused on Chungbuk National University - (학생 설문조사를 통한 탄소중립캠퍼스 조성요인 분석 - 충북대학교 재학생을 대상으로 -)

  • Woo, Hye-Mi;Baek, Jong-In;Kwak, Joo-Hyeon;Min, Suk-Gi;Choi, Choel-Gyu;Ban, Yong-Un
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • In response to climate change under a university level, this study has intended to find carbon-neutral campus development measures for Chungbuk National University (CBNU), which is composed of such facilities as education, research, and residential buildings. To reach this goal, we reviewed related literatures to find development measures for carbon neutral campus, employed a survey method asking students to show their preference and suitability toward provided measures, and statistical analyses to find appropriate measures using factor analysis. We have found the following results. First, based on literature review, we have identified several concepts regarding carbon-neutral city and has found the elements of carbon-neutral campus development. Second, we have drawn carbon-neutral campus development measures of CBNU through factor analysis. Finally, based on the characteristics and the present carbon-neutral campus conditions of the CBNU, we presented development measures.

Numerical Simulation Experiment on the Wind Ventilation Lane of the Local Circulation Winds in Daegu (대구지역의 국지적 대기순환풍의 환기경로에 관한 수치모의 실험)

  • Gu, Hyeon Suk;Kim, Hae Dong;Gang, Seong Dae
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.367-376
    • /
    • 2004
  • In urban area, thermal pollution associated with heat island phenomena is generally regarded to make urban life uncomfortable. To overcome this urban thermal pollution problem, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane, is widely practiced in many countries. In this study, the prevailing wind ventilation lane of a local winds in Daegu during the warm climate season was investigated by using surface wind data and RAMS(Reasonal Atmospheric Model System) simulation. The domain of interest is the vicinity of Daegu metropolitan city(about 900 $km^{2})$ and its horizontal scale is about 30km. The simulations were conducted under the synoptic condition of late spring with the weak gradient wind and mostly clear sky. From the numerical simulations, the following two major conclusions were obtained: (1)The major wind passages of the local circulation wind generated by radiative cooling over the mountains(Mt. Palgong and Mt. Ap) are found. The winds blow down along the valley axis over the eastern part of the Daegu area as a gravity flow during nighttime. (2)After that time, the winds blow toward the western part of Daegu through the city center. As the result, the higher temperature region appears over the western part of Daegu metropolitan area.

Energy Saving and Reduction of Atmospheric $CO_2$ Concentration by, and Planning Guideline for Urban Greenspace (도시녹지의 에너지절약 및 대기 $CO_2$ 농도저감과 계획지침)

  • 조현길;이기의
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.38-47
    • /
    • 2000
  • Carbon dioxide is a major greenhouse gas causing climate change. This study quantified annual direct and indirect uptake of carbon by urban greenspace, and annual carbon release from vegetation maintenance and fossil fuel consumption. The study area was whole Chuncheon and Kangleung, and also two districts of Kangnam and Junglang in Seoul, cities located in middle Korea. Carbon uptake by urban greenspace played an important role through offsetting carbon release by 6-7% annually in Chuncheon and Kangleung. For Kangnam and Junglang, where the population density was relatively higher, urban greenspace annually offset carbon release by 1-2%. Future possible tree plantings could double annual carbon uptake by existing trees in urban lands (except natural and agricultural lands) of a study city. Based on study results, planning and management guidelines for urban greenspace were suggested to save energy and to reduce atmospheric $CO_2$ concentrations. They included selection of optimum tree species, proper planting location from buildings, design of multilayered planting, amendment of existing regulations for greenspace enlargement, avoidance f intensive vegetation maintenance, and conservation of natural vegetation.

  • PDF