• Title/Summary/Keyword: urban canyon aspect ratio

Search Result 4, Processing Time 0.019 seconds

Numerical Simulations of Diurnal Variations of Air Temperature and Relative Humidity in the Urban Canopy Layer (도시 캐노피 층 기온과 상대습도의 일변화에 관한 수치 모의)

  • Park, Kyeongjoo;Han, Beom-Soon;Jin, Han-Gyul
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.295-309
    • /
    • 2021
  • Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m air temperature and exhibits a more rapid rise and an earlier peak in the daytime. These result from the multiple reflections of shortwave radiation and longwave radiation trapping due to the urban geometry. Because of the absence of vegetation in the UCL and the higher canopy layer air temperature, the canopy layer relative humidity is lower than 2-m relative humidity. Additional simulations with building height changes are conducted to examine the sensitivities of the canopy layer meteorological variables to the urban canyon aspect ratio. As the aspect ratio increases, net sensible heat flux entering the UCL increases (decreases) in the daytime (nighttime). However, the increase in the volume of the UCL reduces the magnitude of change rate of the canopy layer air temperature. As a result, the canopy layer air temperature generally decreases in the daytime and increases in the nighttime as the aspect ratio increases. The changes in the canopy layer relative humidity due to the aspect ratio change are largely determined by the canopy layer air temperature. As the aspect ratio increases, the canopy layer relative humidity is generally increased in the daytime and decreased in the nighttime, contrary to the canopy layer air temperature.

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons (도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2014
  • In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

Effects of Trees on Flow and Scalar Dispersion in an Urban Street Canyon (도시 협곡에서 수목이 흐름과 스칼라 물질 확산에 미치는 영향)

  • Kang, Geon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.685-692
    • /
    • 2015
  • In this study, the effects of trees on flow and scalar dispersion in an urban street canyon were investigated using a computational fluid dynamics (CFD) model. For this, we implemented the drag terms of trees to the CFD model, and compared the CFD-simulated results to the wind-tunnel results. For comparison, we considered the same building configuration as the wind-tunnel experiment. The trees were located at the center of street canyon with the aspect ratio (defined as the ratio of the street width to the building height) of 1. First, the flow characteristics were analyzed in the tree-free and high-density tree cases and the results showed that the CFD model reproduced well the flow pattern of the wind-tunnel experiment and reflected the drag effect of trees in the street canyon. Then, the dispersion characteristics of scalar pollutants were investigated for the tree-free, low-density tree and medium-density tree cases. In the tree-free case, the nondimensionalized concentration distribution simulated by the CFD model was quite similar to that in the wind-tunnel experiment in magnitude and pattern. The correlation coefficients between the measured and simulated concentrations are more than 0.9 in all the cases. As the tree density increased, nondimensionalized concentration increased (decreased) near the wall of the upwind (downwind) building, which resulted from the decrease in wind speed case by the drag effect of trees. However, the CFD model underestimated (overestimated) the concentration near the wall of upwind (downwind) building.

A Study on the Characteristics of Flow and Reactive Pollutants' Dispersion in Step-up Street Canyons Using a CFD Model (CFD 모델을 이용한 체승 도시협곡의 흐름과 반응성 대기오염물질 확산 특성 연구)

  • Kim, Eun-Ryoung;Park, Rokjin J.;Lee, Dae-Geun;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • In this study, street canyons with a higher downwind building (so called, step-up street canyons) are considered for understanding characteristics of flow and reactive pollutants' dispersion as a basic step to understand the characteristics in wider urban areas. This study used a CFD_NIMR_SNU coupled to a chemistry module just including simple $NO_X-O_3$ photochemical reactions. First, flow characteristics are analyzed in step-up street canyons with four aspect ratios (0.33, 0.47, 0.6, 0.73) defined as ratios of upwind building heights to downwind building height. The CFD_NIMR_SNU reproduced very well the main features (that is, vortices in the street canyons) which appeared in the wind-tunnel experiment. Wind speed within the street canyons became weak as the aspect ratio increased, because volume of flow incoming over the upwind building decreased. For each step-up street canyon, chemistry transport model was integrated up to 3600 s with the time step of 0.5 s. The distribution patterns of $NO_X$ and $O_3$ were largely dependent on the mean flow patterns, however, $NO_X$ and $O_3$ concentrations were partly affected by photochemical reactions. $O_3$ concentration near the upwind lower region of the street canyons was much lower than background concentration, because there was much reduction in $O_3$ concentration due to NO titration there. Total amount of $NO_X$ in the street canyons increased with the aspect ratio, resulting from the decrease of mean wind intensity.