• Title/Summary/Keyword: urban area flow

Search Result 444, Processing Time 0.023 seconds

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Integrated Environment Impact Assessment of Brick Kiln using Environmental Performance Scores

  • Pokhrel, Rajib;Lee, Heekwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • The capital city of Himalayan Country Nepal, Kathmandu Valley is surrounded by consecutive high mountains, which limits the air distribution and mixing effects significantly. It in turn generates steady air flow pattern over a year except in monsoon season. The air shed in the Valley is easily trapped by the surrounded mountains and the inversion layer formulated as the cap. The $PM_{10}$ concentration was noticeably higher than the standard level (120 ${\mu}g/m^3$) in urban and suburban area of Kathmandu valley for all seasons except monsoon period. The Valley area experiences similar wind patterns (W, WWS, and S) for a year but the Easterly wind prevails only during the monsoon period. There was low and calm wind blows during the winter season. Because of this air flow structure, the air emission from various sources is accumulated within the valley air, high level of air pollution is frequently recorded with other air polluted cities over the world. In this Valley area, brick kilns are recognized as the major air pollution source followed by vehicles. Mostly Bull Trench Kiln (BKT), Hoffman Kiln and Vertical Shaft Brick Kiln (VSBK) are in operation for brick firing in Kathmandu valley where the fuels such as crushed coal, saw dust, and natural gas are used for processing bricks in this study. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) was used for screening and quantifying the potential impacts of air emission from firing fuels. The total Environmental Performance Score (EPS) was estimated and the EPS of coal was approximately 2.5 times higher than those of natural gas and saw dust. It is concluded that the crushed coal has more negative impact to the environment and human health than other fuel sources. Concerning the human health and environment point of view, alternative environment friendly firing fuel need to be used for brick industry in the kiln and the air pollution control devices also need to be applied for minimizing the air emissions from the kilns.

Optimal Positioning Algorithm for Distributed Energy Resources near Ocean Side (해양도시내 분산전원의 최적 설치점 선정)

  • Park, Jeong-Do;Lee, Seong-Hwan;Doe, Geun-Young;Seong, Hyo-Seong;Jang, Nak-Won
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.457-462
    • /
    • 2009
  • In this paper we suggest optimal positioning algorithm for DER(distributed energy resource)s near ocean side by using Newton-Rhapson load flow calculation. By installing DERs within urban area, electric power can be effectively transmitted to each loads without constructing additional large scale power stations and transmission lines. Therefore, DERs have attracted worldwide attention as urban area energy sources. However, there are quite a few studies for estimation of power loss due to DERs' location change within urban area Hence, in this study, an optimal positioning scheme for DERs is proposed in order to minimizing electrical power loss.

A Study on urban runoff by deter ministic simulation techniques. (확정론적 모의기법에 의한 도시유출 해석에 관한 연구)

  • 이은영;강관원
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.37-47
    • /
    • 1982
  • In the past, the design flow of the urban storm drainage systems has been used largely on a basis of empirical and experience, and the rational formula one of empirical method has been widely used for our country, as well as world wide. But the empirical method has insufficient factor because minimal consideration is given to the relationship of the parameters in the equation to the processes being considered, and considerable use of experience and judgment in setting values to the coefficients in the equation is made. The postcomputer era of hydrology has brought an acceleration development of mathematical methods, thus mathematical models are methods which will greatly increase our understanding in hydrology. On this study, a simple mathematical model of urban presented by British Road Research Laboratory is tested on urban watersheds in Ju An Ju Gong Apartment. The basin is located in Kan Seog Dong, Inchon. The model produces a runoff hydrograph by applying rain all to only the directly connected impervious area of the basin. To apply this model the basin is divided into contributing areas or subbasins. With this information the time area for contributing is derived. The rainfall hyetograph to design storm for the basin flow has been obtained by determination of total rainfall and the temporal distribution of that rainfall determined on the basis of Huff's method form historical rainfall data of the basin. The inflows from several subbaisns are successively routed down the network of reaches from the upstream end to the outlet. A simple storage routing technique is used which involves the use of the Manning equation to compute the stage discharge curve for the cross-section in question. To apply the model to a basin, the pattern of impervious areas must be known in detail, as well as the slopes and sizes of all surface and subsurface drains.

  • PDF

Identification of operating parameters in auto-discharging filter system for treatment of urban storm water (자동방류가 가능한 여과형 비점오염처리장치의 운전인자 도출)

  • Kim, Sun-Hee;Gwon, Eun-Mi;Pak, Sung-Soon;Joh, Seong-Ju;Lim, Chea-Hoan;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.377-386
    • /
    • 2010
  • To identify operating parameters of the up-flow filtering system, which is available to discharge filtering residue after the rain, developed for treatment of urban storm runoff, lab scale test was carried out. Removal efficiency of SS was 68.7%, 62.2%, and 58.6% at the area roading rate of 2.46m/h, 4.68m/h, and 10m/h, respectively, filtering device is desirable to operate at the lower than 4.68m/h of area roading rate to get higher level of 60% SS removal efficiency. The removal efficiency of SS was 57.1% ~ 68.7% at the raw water SS of 100mg/L ~ 600mg/L, and the SS in treated water was maintained at the constant level through the elapsed time. It is indicate that filtering device can guarantee a certain level of effluent water quality at various raw water quality. The removal efficiency of SS to the depth of filter media was 68.3%, 78.6% at the filter depth of 10 cm, 20cm respectively. The final treated water quality was showed 30.2mg/L of CODMn, 1.60mg/L of TN and 0.25mg/L of TP. The average removal efficiencies by filtering device developed in this research were recorded slightly lower levels than other research. The main reason of these results were the first, the filter depth of the media used in this test was shallow, the second, the kind of filter media in discharge port of residue. More research to kind of filter media, filter packing rate, select of media for residue discharge port should be go on to produce optimum operating condition. The result of this study would be valuable for the application of filtration device to control of urban storm water.

Hydrochemical Effects of Tributaries and Discharged Waters in the Yangjae Stream Flowing Peri-urban Area (하천유지용수와 지천 유입에 따른 도시하천 양재천의 수리화학적 변화 연구)

  • Kim, Youn-Tae;Chung, Euijin;Park, Jonghoon;Woo, Nam C.
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.678-687
    • /
    • 2018
  • The purpose of this study was to understand the unique and complicated feature of urban stream receiving various inflows. The Yangjae stream, the second tier of the Han River, runs through the southern parts of Seoul, Korea and its middle part flows on the boundary of Seoul where land use is actively changing. Stream flow was greatly influenced by rainfall. Other than rainfall events, effluent discharge from wastewater treatment plant (WWTP) comprised 51 % of stream flux. As a result, majority ions water chemistry was changed at the receiving zone of the discharged effluent (Zone A). Its contribution increased to 69.9 % at the second sampling period with low stream flow. In the middle zone, inflows from the northern area, recently developed to a residential district showed low $NO_3-N$ and high $HCO_3$, Ca, $SO_4$, and $SiO_2$ indicating the effects of groundwater and concrete. One inflow (T-8), with extremely high Na and Cl, median $SiO_2$, was assessed to have anthropogenic influence, however its contribution to main stream was under 1 %. Road construction near Y-13 also affected water chemistry leading to the highest Na and Cl concentration. These hydro chemical changes can be critically used to evaluate the changes in water budget and fate of chemicals in a peri-urban watershed occasioned by human activities on the Yangjae.

Hydrologic Cycle Simulation of Urban River for Rehabilitation of Water Environment (II) - Dorimcheon Basin - (물 환경 건전화를 위한 도시하천의 물 순환 모의 (II) - 도림천 유역 -)

  • Lee, Sang-Ho;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.815-823
    • /
    • 2006
  • The hydrologic cycle in urban catchment has been changed due to the expansion of impervious area by rapid urban development. In this study, the SWMM 5 (Storm Water Management Model 5) model was used to simulate the hydrologic cycle of the Dorimcheon catchment which suffers from the distorted hydrologic cycle as a typical urban catchment. This study compare continuous simulation of urban runoff combining the channel and sewer system with that of channel only in the Dorimcheon catchment. Continuous simulations of urban runoff were performed for the upstream basin of Dorim bridge. The urban impervious regions were processed by the land use analysis from LANDSAT_TM images. It was performed from 1975 to 2000 for every five years. Surface, groundwater and wastewater runoffs were additionally included in the simulations one at a time. Such simulations made it possible to evaluate those components quantitatively. The result of continuous simulation of urban runoff combining the channel and sewer system is that peak flow and recession are well simulated. The analysis results of urbanization effect on runoff are as follows: the surface runoff in 2000 increases to 64% of the whole precipitation whereas the surface runoff in 1975 amounts to 46% of the precipitation; the groundwater runoff in 2000 amounts to 6% and shows 8% decrease during the period from 1975 to 2000.

Development and Its Application of Urban Flood Model in Building Area (밀집시가지 침수모형의 개발 및 적용)

  • Kang, Sang-Hyeok;Kim, Kyung-Nam;Han, Dong-Jun;Kim, Jung-Han
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.203-206
    • /
    • 2007
  • In urban flood model, the features like roads, buildings, and river's banks have great effect on flow dynamics and flood propagation and it must be accounted for model set-up. Two-dimensional hydraulic models in high-density building areas are at the forefront of current research into flood inundation mechanisms, but they are however constrained by inadequate parameters of topography and friction due to insufficient and inaccurate data. This paper describes the development of urban flooding with the extraction of building areas and estimates the its influence on flood inundation extent, and present initial results of flood simulation varying grid size.

  • PDF

Assessment of Design Method about Sanitary Sewer Network according to RDII and Established Scenario (RDII발생 및 기존 시나리오에 따른 오수간선 네트워크 설계방법 검토)

  • Kim, Jungryul;Oh, Jeill
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.367-374
    • /
    • 2016
  • In this study, the RDII impact on sewer designing in the upstream monitoring area (A site) was considered. Based on the long-term (1/1/2011~12/31/2011) rainfall and flow data consisting of 10-min interval sampling in the nearby design area (B site), the maximum RDII/DWF ratio was selected. The sewer network system at B site was evaluated by the Manning equation. Scenario 1 considering the hourly maximum flow with respect to the flow velocity showed that none of the sewer pipes satisfied the minimum flow velocity condition (0.6 m/s), and 40 pipes did not achieve half of the velocity condition. In scenario 2 considering I/I, 1 the pipes satisfied 0.6 m/s, and 35 pipes showed 0.3 m/s. Scenario 3 reflected the effect of RDII. Velocities in 26 pipes were less than 0.3 m/s, and 4 pipes satisfied the velocity condition. With respect to the allowance rate, 17 pipes were shown to have more than 99%, and none of the pipes satisfied less than 95% of the allowance rate in scenario 1. In scenario 2, 17 Ed: Per the Table pipes showed more than 99% and one pipe showed less than 95%. In scenario 3, 16 pipes showed more than 99% of the allowance rate, and 19 pipes showed less than 95%. Based on these results, it is predicted that deposition would occur due to the slow flow velocity; however, capacity would not be a problem.