• Title/Summary/Keyword: urban air mobility

Search Result 109, Processing Time 0.029 seconds

Policy and Industry Trends in Urban Air Mobility (도심항공모빌리티(UAM) 관련 정책·산업 동향 및 이슈)

  • A. Hong;A.S. Park;M.S. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.4
    • /
    • pp.36-46
    • /
    • 2023
  • This paper presents concepts, policies, industry trends, and related issues in urban air mobility (UAM). UAM will contribute to transportation by mitigating traffic congestion and environmental problems in the future. Accordingly, governments of major countries are promoting UAM policies and demonstration projects as well as preparing laws and certification standards. In UAM, overseas startups lead airframe developments, and major companies from the aircraft, automotive, and information technology industries are also participating. In addition, startups and major companies are building the corresponding infrastructure. For the development of UAM, issues related to technology, regulation systems, and infrastructure still need to be resolved.

A Study on Ground and Object Separation Techniques Utilizing 3D Point Cloud Data in Urban Air Mobility (UAM) Environments (UAM 환경에서의 3D Point Cloud Data 지면/객체 분리 기법 연구)

  • Bon-soo Koo;In-ho choi;Jae-rim Yu
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Recently, interest in UAM (Urban Air Mobility) has surged as a critical solution to urban traffic congestion and air pollution issues. However, efficient UAM operation requires accurate 3D Point Cloud data processing, particularly in separating the ground and objects. This paper proposes and validates a method for effectively separating ground and objects in a UAM environment, taking into account its dynamic and complex characteristics. Our approach combines attitude information from MEMS sensors with ground plane estimation using RANSAC, allowing for ground/object separation that isless affected by GPS errors. Simulation results demonstrate that this method effectively operates in UAM settings, marking a significant step toward enhancing safety and efficiency in urban air mobility. Future research will focus on improving the accuracy of this algorithm, evaluating its performance in various UAM scenarios, and proceeding with actual drone tests.

Surveillance-based Risk Assessment Model between Urban Air Mobility and Obstacles (도심 항공 모빌리티와 장애물 간의 감시장비 기반 충돌 위험도 평가모형)

  • Kim, Dongsin;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.19-27
    • /
    • 2022
  • Urban Air Mobility is expected to resolve some problems in urban transportation such as traffic congestion and air pollution. Various studies for a large-scale commercialization of UAM are being actively conducted. To that end, the UAM Traffic Management system aims at securing a safety and an efficiency of UAM operations. In this study, a risk assessment model is proposed to evaluate the risk of collision between a vehicle and surrounding obstacles. The proposed model is conceived from the past studies for determining a proper separation distance between parallel runways for their independent operations. The model calculates the risk that the surveillance system fails to meet a target level of safety for a given buffer zone size between a designed route and surrounding obstacles. The model is applied to one of the routes proposed in K-UAM roadmap to evaluate its performances.

A Study on the Separation Minima for Urban Air Mobility in Low-Density Operation Environments (저밀도 운용 환경에서의 도심항공교통 분리 기준에 관한 연구)

  • Hyoseok Chang;Dohyun Kim;Jaewoo Kim;Daniel Kim;Heeduk Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.710-715
    • /
    • 2023
  • Urbanization brings many challenges such as traffic, housing, and environment. To solve these problems, researchers are working on new transportation systems like urban air mobility (UAM). UAM aircraft should fly safely without burdening the existing air traffic system in the early stage of low-density operation. The airspace should also be managed and operated efficiently. Therefore it is important to make urban air traffic predictable by using corridors and collecting data on low-density operations in the early stage. For this purpose various simulations are needed before operation to create scenarios that estimate potential collisions between UAM aircraft and to evaluate the risks of aircraft spacing, loss of separation (LoS), and near mid air collision (NMAC). This paper focuses on identifying the requirements and considerations for setting separation standards for urban air traffic based on the results of studies.

Examining Importance of Urban Rotorcraft Operations Using Analytic Hierarchy Process

  • Hye-Jin, Hong;Yong-og, Kim;Sungkwan, Ku
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.487-498
    • /
    • 2022
  • This study aims to determine the importance of each factor considered when operating a rotorcraft in a city. After identifying factors that could affect urban air mobility, we reviewed the influencing factors by applying an analytic hierarchy process (AHP). Level 1 classifies the essential factors of the urban operation of rotorcraft in nominal and off-nominal situations. The factors corresponding to the characteristics of each were composed of lower levels, such as Levels 2 and 3. Using this, the importance of influencing factors was analyzed and the most important factors were determined. The most influential factors of the urban operation of rotorcraft included engine failure, fire situations, and vehicle safety. Accordingly, an environment that can guarantee safe operation by considering the most influential factors in advance in an actual operation stage must be constructed.

An Empirical Study on Establishing the Cross-track Corridor Dimension for UAM Operations (도심항공교통(UAM) 운영을 위한 횡적 회랑 규격 실증 연구)

  • Do-hyun Kim;Kyung-han Lee;Hyo-seok Chang;Seung-jun Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Urban air mobility (UAM) is being considered as an alternative to transportation in urban areas where traffic congestion is increasing. It is judged that it will be difficult to manage the complex UAM operation environment with the existing Air Traffic Service, which is a person-centered service. Therefore, an advanced information processing-based traffic management system for UAM (UATM) is needed. Airspace management is essential to establish a systematic UAM traffic management (UATM) environment. In particular, the establishment of exclusive corridors where UAM aircraft can operate safely can provide opportunities to operate UAM aircraft without violating the minimum flight altitude regulations. This study conducted an empirical analysis using a helicopter of similar size to UAM to establish the cross-track dimension of the corridor for UAM operation. The research results can be used as a guideline when designing UAM corridors.

A Study on the Operational Risk Assessment of cargo transport Korean Urban Air Mobility(K-UAM) trial operation corridor applying SORA Model (SORA 모델을 적용한 화물운송 한국형 도심항공교통(K-UAM) 시범운용 회랑의 운용위험도 평가 연구)

  • Namgung, Pyeong;Eom, Jeongho;Lee, Seungkeun;Kwon, Thawha
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.125-135
    • /
    • 2022
  • UAM is emerging as the biggest issue in the aviation industry and which is attracting a lot of attention not only domestically but also internationally. In Korea, active research is being conducted centered on the government and industry-university research institutes, such as the establishment of a future K-UAM concept of operation. Therefore, in this study applies the SORA (Specific Operation Risk Assessment) model established by the European JARUS (Joint Authorities for Rulemaking on Unmanned Systems) to apply the K-UAM operation environment and specific corridor for the purpose of cargo transportation that will be operated in the future that the government is promoting. We intend to suggest policy and technical measures for risk mitigation in the initial operating environment by evaluating the level of risk and analyzing the results.

Analysis of Factors Affecting the Adoption of Urban Air Mobility (UAM) (도심항공교통(UAM) 수용에 영향을 미치는 요인 분석)

  • Ju, Hyo-Geun;Park, Jin-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.96-104
    • /
    • 2021
  • Technological advances have recently led to the development of Urban Air Mobility (UAM) which is a small airplane being able to take off and land vertically. It is emerging as an alternative to transportation services in the city in the future because of the advantage of providing speed and congestion problem in cities like taxis. This research aim to study the user's acceptance of UAM. Based on the survey conducted abroad, the analysis was carried out based on th Technology Acceptance Model (TAM), by Davis et al. (1989). According to the data analysis results of 292 people, Technology, Reliability and Price effect perceived usefulness, which in turn effects Behavioral intention. UAM cannot be operated independently by a single company. It consists of partnerships with vehicles, transport platforms, batteries and other related company. To improve acceptance of UAM, it is required that collaboration between companies and support from government. And while UAM is being developed, research on acceptance from user's point of view should continue.

Disturbance Observer and Time-Delay Controller Design for Individual Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기 기반 개별 블레이드 피치 조종 시스템의 제어를 위한 외란 관측기와 시간 지연제어기 설계)

  • Jaewan Choi;Minyu Kim;Younghoon Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • Recently, the concept of Urban Air Mobility (UAM) has expanded to Advanced Air Mobility (AAM). A tilt rotor type of vertical take-off and landing aircraft has been actively studied and developed. A tilt-rotor aircraft can perform a transition flight between vertical and horizontal flights. A blade pitch angle control system can be used for flight stability during transition flight time. In addition, Individual Blade Control (IBC) can reduce noise and vibration generated in transition flight. This paper proposed Disturbance Observer Based Control (DOBC) and Time Delay Control (TDC) for individual blade control of an Electro-Mechanical Actuator (EMA) based blade pitch angle control system. To compare and analyze proposed controllers, numerical simulations were conducted with DOBC and TDC.

Requirement Analysis of Efficiency, Reliability, Safety, Noise, Emission, Performance and Certification Necessary for the Application of Urban Air Mobility (UAM) (도심항공 모빌리티(UAM) 적용에 필요한 효율, 신뢰성, 안전성, 소음, 배기가스, 성능 및 인증의 요구도 분석)

  • Yun, Ju-Yeol;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.329-342
    • /
    • 2020
  • In this paper, we analyzed the requirements for the application of UAM, a new concept to solve the traffic congestion in large cities. First, the current domestic and foreign status of research and development related to UAM was investigated and the pros and cons and the time required for each mission radius were analyzed for various configurations of aircraft being commercialized. In addition, in order to analyze the market acceptance of the UAM, the individual's consciousness and reliability requirements were identified and safety requirements were analyzed through accident rate data for each aircraft type. Because it operates in a densely populated urban area, requirement analyses on noise and exhaust, which are environmental factors that can affect the community were performed, and requirements related to aircraft performance, certification standards, and airworthiness standards of FAA and EASA were also analyzed.