• Title/Summary/Keyword: urban air

Search Result 1,502, Processing Time 0.03 seconds

Impacts of Urban Green Spaces on Air Quality (도심지역 녹지의 국지적 대기환경영향에 관한 연구)

  • Joo, Hyun Soo;Kim, Seogcheol
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.386-393
    • /
    • 2009
  • This study was to find out the quantitative relation between urban treed area(neighborhood parks) and the atmosphere environment in real condition, focusing the gas-phase non-reacting air pollutants(SOx and NOx) decreasing function of trees in urban area. It also developed a quantitative analysis method for evaluation of the atmosphere influence in the type of treed areas. We set up the Pagoda Park in Seoul and its neighbourhood as a modelling area to analyse air quality impacts by urban neighbourhood park trees. From the modelling result of the Pagoda Park case study, it is concluded that urban neighbourhood park has an important meaning to suppress construction of emission sources which drive the urban polluted air quality worse, even though park's trees have relatively small air purifying function. Especially in the urban area severely contaminated by air pollutants, the first considered air quality management policy is conservation of green spaces in neighborhood park.

Status of particulate matter pollution in urban railway environments (도시철도 환경의 미세먼지 오염 현황)

  • Kim, Jong Bum;Lee, Seung-Bok;Bae, Gwi-Nam
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.303-314
    • /
    • 2018
  • The urban railway system is a convenient public transportation system, as it carries many people without increasing traffic congestion. However, air quality in urban railway environments is worse than ambient air quality due to the internal location of the source of air pollutants and the isolated space. In this paper, characteristics of particulate matter (PM) pollution in urban railway environments are described from the perspective of diurnal variation, chemical composition and source apportionment of PM. PM concentrations in concourse, platform, passenger cabin, and tunnel are summarized through an analysis of 34 journal articles published in Korea and overseas. This information will be helpful in developing effective policies to reduce PM pollution in urban railway environments.

Diurnal Variations of O3 and NO2 Concentrations in an Urban Park in Summer: Effects of Air Temperature and Wind Speed (여름철 도심 공원의 O3과 NO2 농도의 일변화: 기온과 풍속의 영향)

  • Han, Beom-Soon;Kwak, Kyung-Hwan;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.536-546
    • /
    • 2016
  • The diurnal variations of $O_3$ and $NO_2$ in an urban park and the effects of air temperature and wind speed on the diurnal variations are investigated. $O_3$ and $NO_2$ concentrations were observed at a site in an urban park of Seoul from 27 July 2015 to 9 August 2015. The $O_3$ and $NO_2$ concentrations observed in the urban park are compared to those observed at the Gangnam air quality monitoring station (AQMS). The $O_3$ concentration is higher in the urban park than at the Gangnam AQMS in the daytime because the amount of $O_3$ dissociated by NO is smaller as well as partly because the amount of $O_3$ produced in the oxidation process of biogenic volatile organic compounds (VOCs) is larger in the urban park than at the Gangnam AQMS. The $NO_2$ concentration is lower in the urban park than at the Gangnam AQMS during day and night because the observation site in the urban park is relatively far from roads where $NO_x$ is freshly emitted from vehicles. The difference in $NO_2$ concentration is larger in the daytime than in the nighttime. To examine the effects of air temperature and wind speed on the diurnal variations of $O_3$ and $NO_2$, the observed $O_3$ and $NO_2$ concentrations are classified into high or low air temperature and high or low wind speed days. The high $O_3$ and $NO_2$ concentrations in the daytime appear for the high air temperature and low wind speed days. This is because the daytime photochemical processes are favorable when the air temperature is high and the wind speed is low. The scatter plots of the daytime maximum $O_3$ and minimum $NO_2$ concentrations versus the daytime averages of air temperature and wind speed show that the daytime maximum $O_3$ and minimum $NO_2$ concentrations tend to increase as the air temperature increases or the wind speed decreases. The daytime maximum $O_3$ concentration is more sensitive to the changes in air temperature and wind speed in the urban park than at the Gangnam AQMS.

Establishment of Safety Alert Systems for Urban Air Mobility Operations (도심항공교통(UAM) 운항을 위한 안전 경고 기능 구축)

  • Sang-il Choi;Seung-yeon Nam;Hui-yang Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.163-171
    • /
    • 2024
  • In the existing air traffic management (ATM) system, various types of safety alert features are provided based on trajectory data to ensure the safety of aircraft operations, along with aircraft position and detailed flight information. The urban air traffic management (UATM) system for urban air mobility (UAM) should also provide safety alert features to ensure the safety of UAM operations. Considering the operational environment of UAM, it is necessary that the safety alert features provided at least match or exceed those available in the existing ATM system. This study aims to present the safety alert features of the new UATM system that differ from those provided by the existing ATM system before introduction and commercialization of UAM. The study was conducted focusing on the safety alert features that should be provided in the event of a deviation from the UAM's path, and the establishment of the safety alert features was carried out in two parts: approach path monitor (APM), which is applied during the approach phase, and route adherence monitoring (RAM), which is applied during the cruise phase.

Evaluation of Urban Weather Forecast Using WRF-UCM (Urban Canopy Model) Over Seoul (WRF-UCM (Urban Canopy Model)을 이용한 서울 지역의 도시기상 예보 평가)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Bum-Geun
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.13-26
    • /
    • 2010
  • The Urban Canopy Model (UCM) implemented in WRF model is applied to improve urban meteorological forecast for fine-scale (about 1-km horizontal grid spacing) simulations over the city of Seoul. The results of the surface air temperature and wind speed predicted by WRF-UCM model is compared with those of the standard WRF model. The 2-m air temperature and wind speed of the standard WRF are found to be lower than observation, while the nocturnal urban canopy temperature from the WRF-UCM is superior to the surface air temperature from the standard WRF. Although urban canopy temperature (TC) is found to be lower at industrial sites, TC in high-intensity residential areas compares better with surface observation than 2-m temperature. 10-m wind speed is overestimated in urban area, while urban canopy wind (UC) is weaker than observation by the drag effect of the building. The coupled WRF-UCM represents the increase of urban heat from urban effects such as anthropogenic heat and buildings, etc. The study indicates that the WRF-UCM contributes for the improvement of urban weather forecast such nocturnal heat island, especially when an accurate urban information dataset is provided.

Selection of Particulate Matter Observation Measurement Sites in Urban Forest Using Wind Analysis (바람장 분석을 통한 도시숲 미세먼지 관측 장비 설치 지점 선정)

  • Lee, Ahreum;Jeong, Su-Jong;Park, Chan-Ryul;Park, Hoonyoung;Yoon, Jongmin;Son, Junghoon;Bae, Yeon
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • Air pollution in urban areas has become a serious problem in the recent years. Especially, high concentrations of particulate matter (PM) cause negative effects on human health. Several studies suggest urban forest as a tool for improving air quality because of the capability of forests in reducing PM concentrations through deposition and adsorption using leaf area. For this reason, the National Institute of Forest Science plans to install in-situ observation stations for PM and biogenic volatile organic compounds (BVOCs) on a national scale to verify the net effect of forests on urban air pollution. To measure the quantitative change of PM concentrations due to the urban forest, stations should be located within and outside the forest area with respect to atmospheric circulation. In this study, we analyze the wind direction at the potential measurement sites to assess suitable locations for detecting the effect of urban forests on air quality in five cities (i.e. Gwangju, Daegu, Busan, Incheon, and Ilsan). This technical note suggests effective locations of in-situ measurements by considering main wind direction in the five cities of this study. A measurement station network created in the future based on the selected locations will allow quantitative measurements of PM concentration and BVOCs emitted from the urban forest and help provide a comprehensive understanding of the forest capabilities of reducing air pollution.

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

Analysis of the Correlation between Urban High Temperature Phenomenon and Air Pollution during Summer in Daegu

  • An, Eun-Ji;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, summer high temperature events caused by climate change and urban heat island phenomenon have become a serious social problem around the world. Urban areas have low albedo and huge heat storage, resulting in higher temperatures and longer lasting characteristics. To effectively consider the urban heat island measures, it is important to quantitatively grasp the impact of urban high temperatures on the society. Until now, the study of urban heat island phenomenon had been carried out focusing only on the effects of urban high temperature on human health (such as heat stroke and sleep disturbance). In this study, we focus on the effect of urban heat island phenomenon on air pollution. In particular, the relationship between high temperature phenomena in urban areas during summer and the concentration of photochemical oxidant is investigated. High concentrations of ozone during summer are confirmed to coincide with a day when the causative substances (NO2,VOCs) are high in urban areas during the early morning hours. Further, it is noted that the night urban heat island intensity is large.. Finally, although the concentration of other air pollutants has been decreasing in the long term, the concentration of photochemical oxidant gradually increases in Daegu.

On the management methods for regional air quality improvement

  • Park, Chan Jin
    • Journal of Urban Science
    • /
    • v.6 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • The air quality management in regional viewpoint was investigated for the improvement of national air pollution with various standard air pollutants. The focal region in this research is north-eastern region in asia where the many developing industries are located in neighboring countries. The major concerns were the trends of air quality in recent years and the state of environmental technologies and policies of air quality in each countries. The regional air quality management for the improvement of air pollution and the effective programs were suggested for the effective air quality management.

  • PDF