• Title/Summary/Keyword: uranium removal

Search Result 59, Processing Time 0.024 seconds

Removal of Uranium from Uranium Plant Wastewater Using Zero-Valent Iron in an Ultrasonic Field

  • Li, Jing;Zhang, Libo;Peng, Jinhui;Hu, Jinming;Yang, Lifeng;Ma, Aiyuan;Xia, Hongying;Guo, Wenqian;Yu, Xia
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.744-750
    • /
    • 2016
  • Uranium removal from uranium plant wastewater using zero-valent iron in an ultrasonic field was investigated. Batch experiments designed by the response surface methodology (RSM) were conducted to study the effects of pH, ultrasonic reaction time, and dosage of zero-valent iron on uranium removal efficiency. From the experimental data obtained in this work, it was found that the ultrasonic method employing zero-valent iron powder effectively removes uranium from uranium plant wastewater with a uranium concentration of $2,772.23{\mu}g/L$. The pH ranges widely from 3 to 7 in the ultrasonic field, and the prediction model obtained by the RSM has good agreement with the experimental results.

Evaluation of Rhizofiltration for Uranium Removal with Calculation of the Removal Capacity of Raphanus sativus L. (무순(Raphanus sativus L.)의 제거능 계산에 의한 뿌리여과법의 우라늄 제거 가능성 평가)

  • Han, Yikyeong;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.43-52
    • /
    • 2015
  • The uranium removal capacity of radish sprouts (Raphanus sativus L.) in groundwater was calculated on the basis of the amount of uranium accumulated in the radish sprouts rather than the concentration in solution, of which process was very limited in previous studies. Continuous rhizofiltration clean-up system was designed to investigate the feasibility of radish sprouts, applying for uranium contaminated groundwater (U concentration: 110 μg/L) taken at Bugogdong, Busan. Six acrylic boxes (10 cm × 30 cm × 10 cm) were connected in a direct series for the continuous rhizofiltration system and 200 g of radish sprouts cultivars was placed in each box. The groundwater was flushed through the system for 48 hours at the constant rate of 5 mL/min. The rhizofiltration system was operated in the phytotron, of which conditions were at 25℃ temperature, 70% of relative humidity, 4,000 Lux illumination (16 hours/day) and 600 mg/L of CO2 concentration. While 14.4 L of contaminated groundwater was treated, the uranium removal efficiency of the radish sprouts (1,200 g in wet weight) was 77.2% and their removal capacities ranged at 152.1 μg/g-239.7 μg/g (the average: 210.8 μg/g), suggesting that the radish sprouts belong to the group of hyper-accumulation species. After the experiment, the sum of U amounts accumulated in radish sprouts and remained in groundwater was 1,472.2 μg and the uranium recovery ratio of this rhizofiltration experiment was 92.9%. From the results, it was investigated that the radish sprouts can remove large amounts of uranium from contaminated groundwater in a short time (few days) because the fast growth rate and the high U accumulation adsorption capacity.

Application of Rhizofiltration using Lettuce, Chinese Cabbage, Radish Sprouts and Buttercup for the Remediation of Uranium Contaminated Groundwater (상추, 배추, 무순, 미나리를 이용한 뿌리여과법(rhizofiltration)의 우라늄으로 오염된 지하수 정화 효율 규명)

  • Han, Yikyeong;Kim, Seyoon;Heo, Hyojin;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.37-48
    • /
    • 2014
  • Lab scale rhizofiltration by using four plants was performed to investigate the uranium removal efficiency from groundwater. Lettuce (Lactuca sativa L.), Chinese cabbage (Brassica campestris L.), radish sprouts (Raphanus sativus L.) and buttercup (Oenanthe javanica) were cultivated during 3 weeks in the phytotron. Glass jar ($12cm{\times}12cm{\times}8cm$ for each), containing 350 ml of the artificially uranium contaminated solution was used for 72 hours of the rhizofiltration. In experiments with different initial uranium concentration ($18.00{\mu}g/L$, $31.00{\mu}g/L$, $84.00{\mu}g/L$ and $116.00{\mu}g/L$) in solution, more than 70% of the initial uranium were removed by using lettuce, Chinese cabbage and radish sprouts and the residual uranium concentration in solution maintained lower than USEPA water tolerance limit ($30{\mu}g/L$). From the rhizofiltration experiments at various pH conditions, the highest uranium removal for all four plants was acquired at pH 3 in solution. Rhizofiltration experiments testing two field samples of groundwaters having high uranium concentrations ($86.00{\mu}g/L$ and $173.00{\mu}g/L$) were duplicated and more than 83% of the initial uranium were removed from the groundwater within 72 hours of rhizofiltration by using radish sprouts, which, suggests that the rhizofiltration can be a useful process to remediate uranium contaminated groundwater in the field. After the rhizofiltration experiment, the SEM and EDS analyses for the root surface of the radish sprouts were conducted, suggesting that the main mechanism of the rhizofiltration for the removal of uranium from groundwater would be surface precipitation on the root surface of the plant.

Removal of Uranium in Water by Beads of Chitosan the Graft-Copolymerized with Itaconic Acid (Itaconic acid로 그라프트 공중합한 Chitosan의 beads를 이용한 수계 우라늄의 제거)

  • Kang Soo-Jung;Kim Nam-Ki;Kim Jae-Woo;Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.47-55
    • /
    • 2005
  • The World Health Organization(WHO, 1998) and the United States Environmental Protection Agency (USEPA, 1992) recommended $2{\mu}\;guranium/{\ell}$ in drinking water as a guideline. The Korea Institute for Environmental Research recently reported that the radioactive pollution in ground water was almost negligible In Korea$(1999\~2002)$. Cs were cast into beads(2mm in wet form) and treated with hexamethylene diisocyanate for stability in acidic aqueous solution through cross-linking of the beads surfaces. The removal study was carried out in a static batch system and a flow system. In the static system, a certain amount of sample water was confined in a vessel and beads(dry weight 0.5g) were packed into it in order to adsorb uranium for a certain period of time. Afterwards the remaining uranium in water vessel was determined by inductively coupled plasma mass spectrometry. The effective pH range was 4 to 8. The smaller the size of beads, the better the removal efficiency. Furthemore, the lower the flow rates, the higher the removal efficiency. The results showed that chitosan beads can be effectively used for the removal of uranium contained in water.

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

Characterization of Uranium Removal and Mineralization by Bacteria in Deep Underground, Korea Atomic Energy Research Institute (KAERI) (한국원자력연구원 지하심부 미생물에 의한 용존우라늄 제거 및 광물화 특성)

  • Oh, Jong-Min;Lee, Seung-Yeop;Baik, Min-Hoon;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2010
  • Removal and mineralization of dissolved uranium by bacteria in KURT (KAERI Underground Research Tunnel), Korea Atomic Energy Research Institute (KAERI) was investigated. Two different bacteria, IRB (iron-reducing bacteria) and SRB (sulfate-reducing bacteria) was used, and minerals formed by these bacteria were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared to uranyl ions, ferric ions were preferentially reduced by IRB, showing that there is no significant reduction and removal of uranium. However, uranium concentration considerably decreased by addition of Mn(II). Results show that a sulfide mineral such as mackinawite (FeS) is formed by SRB respiration through combination of Fe(II) and S without manganese sulfide formation. In the presence of Mn(II), however, uranium is removed effectively, suggesting that the sorption and incorporation of uranium could be affected by Mn(II) onto the sulide minerals.

Rhizofiltration Process with Helianthus annuss L., Phaseolus vulgaris var., and Brassica juncea (L.) Czern. to Remediate Uranium Contaminated Groundwater (해바라기, 갓, 강낭콩을 이용한 수생법(Rhizofiltration)의 우라늄으로 오염된 지하수 정화 효율 규명)

  • Yang, Min-June;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.30-39
    • /
    • 2008
  • The uranium removal efficiency of rhizofiltration was investigated in lab scale experiment. Three plants such as sunflower (Helianthus annuus L.), bean (Phaseolus vulgaris var.), and Indian mustard (Brassica juncea (L.) Czern.) were cultivated in artificially contaminated solution by uranium at 30 ${\mu}g$/L and 80 ${\mu}g$/L for 72 hours. The removal efficiencies of three cultivars were calculated from the ICP/MS analysis of uranium mass in solution and the plant. For Helianthus annuus L., more than 80% of initial uranium were removed from the solution and the uranium concentration of residual solution maintained lower than 10 ${\mu}g$/L. For Phaseolus vulgaris var. and Brassica juncea (L.) Czern., their uranium removal efficiencies ranged from 60 to 80%. Even the uranium concentration of solution was higher than 500 ${\mu}g$/L, these cultivars removed more than 70% of initial uranium by rhizofiltration, suggesting that the rhizofiltration has a great capability to remove uranium in the contaminated groundwater. The removal efficiency of rhizofiltration by using Brassica juncea (L.) Czern decreased from 83% to 42% with the increase of pH in solution. From the results of the analysis for the uranium accumulation in plants, 99% of uranium transferred into the plant from solution were accumulated in the root and only 1% of uranium existed in the shoot part (including leaves), suggesting that the cost and the time to treat massive grown plants after the rhizofiltration could be dramatically cut down because only their root parts needs to be treated. Finally, the genuine groundwater having high uranium concentration (81.4 ${\mu}g$/L), sampled from Daejoun area, was used in the experiment. The uranium removal efficiency of Helianthus annuus L. for the real groundwater was higher than 95%, investigating that the rhizofiltration is the very useful method to remediate uranium contaminated groundwater.

Recovery of Zirconium and Removal of Uranium from Alloy Waste by Chloride Volatilization Method

  • Sato, Nobuaki;Minami, Ryosuke;Fujino, Takeo;Matsuda, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.179-182
    • /
    • 2001
  • The chloride volatilization method for the recovery of zirconium and removal of uranium from zirconium containing metallic wastes formed in spent fuel reprocessing was studied using the simulated alloy waste, i.e. the mixture of Zr foil and UO$_2$/U$_3$O$_{8}$ powder. When the simulated waste was heated to react with chlorine gas at 350- l00$0^{\circ}C$, the zirconium metal changed to volatile ZrCl$_4$showing high volatility ratio (Vzr) of 99%. The amount of volatilized uranium increases at higher temperatures causing lowering of decontamination factor (DF) of uranium. This is thought to be caused by the chlorination of UO$_2$ with ZrCl$_4$vapor. The highest DF value of 12.5 was obtained when the reaction temperature was 35$0^{\circ}C$. Addition of 10 vol.% oxygen gas into chlorine gas was effective for suppressing the volatilization of uranium, while the volatilization ratio of zirconium was decreased to 68% with the addition of 20 vol.% oxygen. In the case of the mixture of Zr foil and U$_3$O$_{8}$, the V value of uranium showed minimum (44%) at 40$0^{\circ}C$ with chlorine gas giving the highest DF value 24.3. When the 10 vol.% oxygen was added to chlorine gas, the V value of zirconium decreased to 82% at $600^{\circ}C$, but almost all the uranium volatilized (Vu=99%), which may be caused by the formation of volatile uranium chlorides under oxidative atmosphere.ere.

  • PDF

Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal (우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안)

  • Park, Hye-Min;Kim, Gye-Nam;Kim, Seung-Soo;Kim, Wan-Suk;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • The original pilot-scale electrokinetic equipment suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During the experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathode plate. The uranium removal capability of the original electrokinrtic equipment was almost exhausted because the cathode plate covered with metal oxides did not conduct electricity in the original electrokinetic equipment. Therefore, the original electrokinetic equipment was improved. After the remediation experience for 25 days using the improved electrokinetic remediation equipment, the removal efficiency of uranium from the soil was 96.8% and its residual uranium concentration was 0.81 Bq/g. When the initial uranium concentration of soil was about 50 Bq/g, the electrokinetic remediation time required to remediate the uranium concentration below clearance concentration of 1.0 Bq/g was about 34 days. When the initial uranium concentration of soil was about 75 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 42 days. When the initial uranium concentration of soil was about 100 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 49 days.

Improvement of Removal Characteristics of Uranium by the Immobilization of Diphosil Powder onto Alginate Bed (다이포실 분말수지의 비드화에 의한 우라늄 제거특성 개선)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.133-138
    • /
    • 2006
  • Chemical wastes containing small amounts of uranium can not be disposed of them after treatment as an industrial waste, because the uranium concentration in the final dry cake exceeds the exemption level. Especially for the removal of uranium in this study, the method for immobilizing Diphosil powder within alginate beads is adopted to make a bead form from a powdered resin. Sodium alginate bead itself showed a capability to uptake uranium to above 60%, but the value was decreased to below 30% after equilibrium. The adsorption rate of uranium increased with the increasing content of Diphosil in the sodium alginate bead. Diphosil resin itself showed very fast uptake of uranium from early stages, and then the rates were leveled off. Diphosil bead showed an improved capability to uptake uranium considering the pure Diphosil content in the composite bead, and provide a considerable potential for further applications of a continuous process by using Diphosil as a bead form.

  • PDF