• Title/Summary/Keyword: uranium concentration

Search Result 201, Processing Time 0.02 seconds

Chemical Species of Uranium and Vanadium in Organic Acid Media (유기산용액에서 우라늄과 바나듐의 화학종에 관한 연구)

  • Ki-Won Cha;Cong-Sik Yu;Jong-Hun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.615-622
    • /
    • 1985
  • The chemical species formed by uranium and vanadium and their equilibria have been investigated in the various concentrations of oxalic and acetic acids by the ion exchange chromatography and UV-Vis spectrophotometry. Uranyl and vanadyl ions seem to be form the complex as $UO_2(C_2O_4)_2=$, $UO_2(C_2O_4)_3^{4-}$ and $VO_2(C_2O_4)-2^{3-}$ respectively in the concentration range of 0.005∼0.05M oxalic acid concentration. In the case of acetic acid the equilibria of $UO_2^{2+}+3Ac^-=UO_2(Ac)_3^-$ and $VO_2^++2Ac^-=VO_2(Ac)_2^-$ were existed individually according to the increase of acetic acid concentration.

  • PDF

Influence of Dissolved Ions on Geochemical Dissolution of Uranium in KURT Granite (KURT 화강암 내 우라늄의 지화학적 용출특성에 미치는 용존이온의 영향)

  • Cho, Wan Hyoung;Baik, Min Hoon;Ryu, Ji-Hun;Lee, Jae Kwang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2018
  • In order to understand the long-term behavior of radionuclides in granite environments, geochemical behavior characteristics of uranium in granitic host rock of KURT (KAERI Underground Research Tunnel) were investigated by dissolution experiment with different reaction time and solutions. In the dissolution experiment, significantly increased dissolution levels of uranium from granite powder samples were identified during the reaction time of 0~10 days for reaction solutions ($UD-CO_3$ and UD-Bg) containing a large amount of $CO_3{^{2-}}$. On the other hand, significantly increased dissolution levels of uranium were also identified for reaction solutions containing Na and Ca after 60 days. Dissolution of uranium continuously increased in reaction solutions of $UD-CO_3$ ($44.61{\mu}g{\cdot}L^{-1}$), UD-Bg ($41.01{\mu}g{\cdot}L^{-1}$), UD-Na ($26.87{\mu}g{\cdot}L^{-1}$), UD-Ca ($20.26{\mu}g{\cdot}L^{-1}$), UD-CaSi ($17.03{\mu}g{\cdot}L^{-1}$), and UD-Si ($10.47{\mu}g{\cdot}L^{-1}$) in the experimental period of ~270 days. However, after day 270, dissolution of uranium showed a decreasing tendency. This is thought to have occurred because existing uranium in granite samples reached the limit of dissolution by interaction with reaction solutions. Concentrations of dissolved uranium and points of maximum concentration value were found to differ depending on the $CO_3{^{2-}}$ presence in the mixed reaction solution and on the geochemical type of the water. It is estimated that differences in the reaction rate between the granite sample and the reaction solution are due to the influence of dissolved ions in the reaction solution.

Effect of Rare Earth Elements on Uranium Electrodeposition in LiCl-KCl Eutectic Salt (LiCl-KCl 공융염에서 우라늄 전착거동에 대한 희토류 원소들의 영향)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2015
  • It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the elctrorefining process was investigated by considering the separation factors with respect to $UCl_3$ and $CeCl_3/UCl_3$ ratio.

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

A Study on Harmful Radioactive Gas(Rn$_222$)-Concentration in Soils, Taejeon City (대전지역 토양에서 유해 방사성가스인 라돈 농집에 대한 연구)

  • 김승오;김해경
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.489-496
    • /
    • 1997
  • The arm of this study is to determine harmful radioactive gas($Rn^{222}$)-concentrations in soils and to suggest the anormalous regions of $Rn^{222}$-concentration in Taejeon area. The range of $Rn^{222}$-concentration in the soils (45 samples) of the survey area is 100 to 2, 475 (pCi/L) and mean$\pm$$\sigma$ of those values is 489$\pm$ 505 (pCi/L). The 2% (4 samples) of soil-gas samples (45 ones) collected In the survey area is corresponded to high rusk level, 53% (24 samples) to medium one and 43% (19 samples) to low one. Especially. The $Rn^{222}$-concentration is relatively higher in schistose granite region than in other rock Mts (two-mica granite and biotite ganite) in the survey area. The $Rn^{222}$-concentration is propotional to the uranium contents in the soils. The soil hardness among the various factors is correlative with $Rn^{222}$-concentrations. To prevent the damage from $Rn^{222}$-concentrations, It is necessary to close the cracks of underground structure and to consider methods reducing $Rn^{222}$-concentration for the anormalous regions.

  • PDF

Synthesis and Use of a Ligand for the Extraction of Uranium (I) (우라늄 추출을 위한 리간드의 합성 및 응용 (제 1 보))

  • Chong Min Park;Suk Nam Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.315-321
    • /
    • 1987
  • The ligand, 2,10-dibenzyl-4,6,8-trioxo-3,9-diaza undecane dioic acid(DTDA) for the extraction of uranium was synthesized under dry nitrogen from phenylalanine and 3-oxoglutaric acid. Extraction was performed by stirring a solution of DTDA in dichloromethane for 1 hour with an aqueous solution of $UO_2(ClO_4)_2{\cdot}6H_2O$ at various pH values and at different $DTDA/UO_2{^{2+}}$ molar ratios. Extraction efficiency reaches a maximum when the pH of the aqueous phase was ca 8.0. The extraction percentage was affected by concentration of DTDA and increases with the $DTDA/UO_2{^{2+}}$ molar ratio to complete extraction with a 4 fold excess of DTDA. The high selectivity of the DTDA for uranium was ascertained by competition experiments with other cations. The bound uranyl ion was quantitatively liberated within few minutes from the organic phase by treatment with an aqueous 1M HCI solution and DTDA was recovered very satisfactorily from the organic phase. The values of the over-all formation constants of the complex between uranyl ion and DTDA were determined to be the following : ${\beta}_1=1.20{\times}10^5\;,\;{\beta}_2=1.01{\times}10^8$.

  • PDF

Characteristics of Uraniferous Minerals in Daebo Granite and Significance of Mineral Species (대보화강암내 함우라늄 광물의 산출특징과 존재형태의 중요성)

  • 추창오
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2002
  • A mineralogical study was made in order to identify the relationship between uranium content in groundwater and rock chemistry using core rocks recovered from the drilling holes for wells in the Daebo Granite areas. Uraniferous minerals are of primary origin and occur as inclusions in accessory minerals such as zircon, monazite, and xenotime. Since the uraniferous minerals are very small to be 1 ~ 2 $\mu$m in size, it is difficult to distinguish their mineralogical species precisely. The frequent presence of dissolution cavities or dissolved textures in the accessory minerals suggests that uraniferous minerals dissolved partially and contributed to the groundwater chemistry. Because there is no clear relationship between host rocks and groundwater for uranium concentration, mineralogical characteristics of uraniferous minerals, together with aqueous geochemical conditions favorable for uranium dissolution, could play important roles in groundwaster chemistry.

Geochemical Study on the Uranium Anomaly around the Shinbo Talc Mine (II) - In the Light of Isotopic Characteristics - (신보활석광산 주변에 형성된 우라늄 이상치에 관한 지화학적 연구 (II) -동위원소적 특성을 중심으로-)

  • 나춘기;박희열;박현주
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.367-377
    • /
    • 2000
  • The purpose of this study is to elucidate the source of U anomaly formed in stream water of the drainage system around the Shinbo talc mine area based on the O, H, S and Sr isotopic characteristics of water masses and wall rocks. The ${\delta}$D and ${\delta}^{18}O$ of surface and ground waters show highly restricted range and plotted on the same meteoric water line, indicating that they are all originated from the meteoric water. The ${\delta}^{34}S$value of the ground water containing high U shows slightly negative (-0.2${\textperthousand}$) and quite distinct from those of the other surface and ground waters that are similar to those of wall rocks (>5.8${\textperthousand}$), indicating that they have a different S isotopic fractionation or less probably, source. The $^{87}Sr/^{86}{Sr}$ratios of water masses around the Shinbo talc mine area show a variable range from 0.724325 to 0.744928, but tend to increase with increasing U concentration of water mass. Although it is not possible to determine precisely the source rock of U anomaly formed in the hydrologic system around the Shinbo talc mine, the evidence obtained from the Sr isotopic compositions strongly suggests that coal schist and/or pegmatite vein could be the most likely candidate for the source rock.

  • PDF

Removal Characteristics of Dissolved Uranium by Shewanella p. and Application to Radioactive Waste Disposal (스와넬라균(Shewanella p.)에 의한 용존우라늄 제거 특성 및 방사성폐기물 처분에의 응용)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Song, Jun-Kyu
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.471-477
    • /
    • 2009
  • An experimental removal of dissolved uranium (U) exsiting as uranyl ion (${UO_2}^{2+}$) was carried out using Shewanella p., iron-reducing bacterium. By the microbial reductive reaction, initial U concentration ($50{\mu}M$) was constantly decreased, and most U were removed from solution after 2 weeks. Major mechanism that U was removed from the solution was adsorption, precipitation and mineralization on the microbe surface. Under the transmission electron microscopy, the U adsorbed on the microbe was observed as being crystallized and eventually enlarged to several ${\mu}m$ sizes of minerals by combining with individual microbes and organic exudates. It seems that such U growth and mineralization on the microbial surface could affect the U behavior in a radioactive waste disposal site. Thus, the biogechemical reaction of metal-reducing bacteria observed in this experiment could give an affirmative measure that the microbial activity may retard U movement in subsurface environment.

A Simple and Effective Purification Method for Removal of U(VI) from Soil-Flushing Effluent Using Precipitation: Distillation Process for Clearance

  • Hyun-Kyu Lee;Ilgook Kim;In-Ho Yoon;Wooshin Park;Seeun Chang;Hongrae Jeon;Sungbin Park
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • Background: The purpose of this study is to purify uranium (U[VI])-contaminated soil-flushing effluent using the precipitation-distillation process for clearance. Precipitation and distillation are commonly used techniques for water treatment. We propose using a combination of these methods for the simple and effective removal of U(VI) ions from soil-flushing effluents. In addition, the U concentration (Bq/g) of solid waste generated in the proposed treatment process was analyzed to confirm whether it satisfies the clearance level. Materials and Methods: Uranium-contaminated soil was decontaminated by soil-flushing using 0.5 M sulfuric acid. The soil-flushing effluent was treated with sodium hydroxide powder to precipitate U(VI) ions, and the remaining U(VI) ions were removed by phosphate addition. The effluent from which U(VI) ions were removed was distilled for reuse as a soil-flushing eluent. Results and Discussion: The purification method using the precipitation-distillation process proposed in this study effectively removes U(VI) ions from U-contaminated soil-flushing effluent. In addition, most of the solid waste generated in the purification process satisfied the clearance level. Conclusion: The proposed purification process is considered to have potential as a soil-flushing effluent treatment method to reduce the amount of radioactive waste generated.