• 제목/요약/키워드: upwind flow

검색결과 249건 처리시간 0.047초

다양한 $k-{\varepsilon}$ 난류모델과 Skew-Upwind 기법에 의한 단이 진 벽면분류에 대한 수치해석 (Numerical Analyses on Wall-Attaching Offset Jet with Various Turbulent $k-{\varepsilon}$ Models and Skew-Upwind Scheme)

  • 서호택;부정숙
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.224-232
    • /
    • 2000
  • Four turbulent $k-{\varepsilon}$ models (i.e., standard model, modified models with streamline curvature modification and/or preferential dissipation modification) are applied in order to analyze the turbulent flow of wall-attaching offset jet. For numerical convergence, this paper develops a method of slowly increasing the convective effect induced by skew-velocity in skew-upwind scheme (hereafter called Partial Skewupwind Scheme). Even though the method was simple, it was efficient in view of convergent speed, computer memory storage, programming, etc. The numerical results of all models show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show some deviations in ·second order (i.e., kinetic energy and its dissipation rate). Like the previous results obtained by upwind scheme, the streamline curvature modification results in better prediction, while the preferential dissipation modification does not.

하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발 (Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow)

  • 한건연;백창현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

An Upwind Meshfree Method for the Supersonic Flow

  • Ahn, Mu-Young;Chang, Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.74-75
    • /
    • 2006
  • Recently much attention has been drawn to meshfree method since conventional methods such as FDM, FVM and FEM have suffered from difficulty with mesh generation for complex geometry and deformable bodies. In this paper, an upwind point collocation meshfree method developed by the authors is applied to two shock wave diffraction problems. One is the shock diffraction over a 90-degree corner and the other is the single Mach reflection on a ramp. The scheme showed stability and the results showed accuracy.

  • PDF

An Implementation of the Robust Inviscid Wall Boundary Condition in High-Speed Flow Calculations

  • Kim, Moon-Sang;Jeon, Byung-Woo;Kim, Yong-Nyun;Kwon, Hyeok-Bin;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.671-680
    • /
    • 2001
  • Boundary condition is one of the major factors to influence the numerical stability and solution accuracy in numerical analysis. One of the most important physical boundary conditions in the flowfield analysis is the wall boundary condition imposed on the body surface. To solve a two-dimensional Euler equation, totally four numerical wall boundary conditions should be prescribed. Two of them are supplied by the flow tangency condition. The other two conditions, therefore, should be prepared additionally in a suitable way. In this paper, four different sets of wall boundary conditions are proposed and then applied to solve high-speed flowfields around a quarter circle geometry. A two-dimensional compressible Euler solver is prepared based on the finite volume method. This solver hires three different upwind schemes; Steger-Warmings flux vector splitting, Roes flux difference splitting, and Lious advection upstream splitting method. It is found that the way to specify the additional numerical wall boundary conditions strongly affects the overall stability and accuracy of the upwind schemes in high-speed flow calculation. The optimal wall boundary conditions should be also chosen very carefully depending on the numerical schemes used to solve the problem.

  • PDF

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

일차원 상류이송형모형의 자연하도에 대한 적용 (Application of a One-Dimensional Upwind Model for Natural Rivers)

  • 김원;한건연;우효섭
    • 한국수자원학회논문집
    • /
    • 제38권5호
    • /
    • pp.333-343
    • /
    • 2005
  • 상류이송기법은 충격파 모의에 많이 사용되고 있으나 생성항의 처리 한계로 인해 자연하도에 적용된 사례는 매우 드문 상황이다. 생성항 처리를 위한 기법들이 개발되기는 하였으나 자연하도에 직접 적용될 수 있는 효과적인 기법은 없는 상황이기 때문이다. 본 논문에서는 상류이송형 일차원 음해 수치모형을 자연하도에 적용하였다. 상류이송모형은 하상과 하폭이 심하게 변화하는 가상하도와 하천구조물이 있는 실제 자연하천에 적용되었다. 또한 본 연구에서는 이 모형을 정상류, 부정류, 댐붕괴류, 보어의 전파 등 여러 가지 흐름에 적용하여 정확성과 적용성을 검증하였다. 검증결과 본 연구에서 개발된 모형은 자연하천에서 발생하는 여러 가지 형태의 흐름을 높은 정확도로 안정성있게 모의할 수 있는 것으로 나타났다.

채널 내 부착된 입방체 장애물 주위 유동에 관한 LES 난류모델의 영향 평가 (EVALUATION ON TURBULENT MODEL IN LARGE EDDY SIMULATION OF TUHANNEL FLOW AROUND A WALL-MOUNTED CUBE IN A CHANNEL)

  • 박남섭;고상철
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.28-34
    • /
    • 2008
  • In engineering application of large eddy simulation, there are still questions as follows grid dependency on numerical results, the effect of upwind scheme against a calculation instability, appropriate boundary conditions dealing with turbulence fluctuation and the performance of SGS models. In this study, in order to develop the LES to the engineering application, large eddy simulation was carried out to investigate the effect of upwind scheme, turbulent subgrid model and the grid dependancy of the flow around a wall-mounted cube in a channel at Re=40,000 based on cubic height and bulk mean velocity. The computed velocities, turbulence quantities, separation and reattachment length were evaluated compared with the experimental results of R. Matinuzzi and C. Tropea.

Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석 (A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method)

  • 권창오;김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.123-141
    • /
    • 1996
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone(5°) geometry. The effective gamma(γ), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about 3 ∼ 5 percent. The heat transfer coefficient were also calculated. The results were compared with VSL results in order to validate the current numerical analysis. The results from current method were compared well VSL results ; however, not well at near nose. The proper boundary condition and grid system will be studied to improve the solution quality.

  • PDF

Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석 (A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method)

  • 권창오;김상덕;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.203-212
    • /
    • 1995
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone($5^{\circ}$) geometry. The effective gamma($\bar{r}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30Km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about $3\sim5$ percent. The skin friction coefficient and heat transfer coefficient were also calculated.

  • PDF

축대칭엔진 실린더 내의 유동장에 관한 수치해석적 연구 (Numerical Study on Flow Field in the Cylinder of an Axisymmetric Engine)

  • 김영환;유정열;강신형
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.467-474
    • /
    • 1993
  • Viscous flow and heat transfer phenomena in an axisymmetric cylinder which models a diesel engine have been numerically studied. In order to search for a way to minimize numerical diffusion, the effectiveness and the appropriateness of two selected numerical schemes for convective terms in the governing equations have been tested. They are Linear Upwind Difference Scheme and Hybrid Scheme. Using a standard k-.epsilon. turbulence model, the calculation has been carried out basically up to 180.deg. of crank angle. As a result, it was shown from comparison with previous experimental data that Linear Upwind Difference Scheme is less influenced than Hybrid Scheme by the numerical diffusion and it was suggested that these effects of numerical diffusion can be more significant than those due to turbulence modeling.