• Title/Summary/Keyword: upsetting

Search Result 174, Processing Time 0.026 seconds

A Study on the Temperature Distribution of Materials Due to Electric Upsetting Forming (전기 엎셋팅 가공시의 온도분포에 관한 연구)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 1994
  • The transient temperature distribution of materials during upsetting forming is very important for quality of upsetted workpiece and understanding the thermal characteristics of upsetting is essential for optimum control of the forming. In this paper it is shown that the governing equation of heat transfer for axi-symetric body can be derived from minimizing a functional, and from this theory, formulation of analysis by the finite element method is presented. It is also shown that the thermal contact resistance between two bodies can be represented by equivalent coefficient of heat conductivity. Some examples of calsulated transient temperature distributions by the computer program diveloped from the theory presented in this paper are given in graphic forms. It is proven that the results calculations are very plausible.

  • PDF

Rigid-thermoviscoplastic finite element analysis of an electric upsetting process (전기 업셋팅 공정의 강열점소성 유한요소해석)

  • Lee, M.C.;Choi, I.S.;Kim, H.T.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.177-182
    • /
    • 2007
  • We simulated an electric upsetting process by the rigid-thermoviscoplastic finite element method. Several engineering assumptions were made to calculate the heat generation due to the electric resistance. The skin effect of the bar was taken into account for the heat generation. The approach was applied to simulate an artificial electric upsetting process for the exhaust valve of the ship engine.

  • PDF

Rigid-Thermoviscoplastic Finite Element Analysis of an Electric Upsetting Process (전기 업셋팅 공정의 강열점소성 유한요소해석)

  • Choi, In-Su;Kim, Min-Cheol;Kim, Hong-Tae;Joun, Man-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.152-158
    • /
    • 2011
  • An electric upsetting process by the rigid-thermoviscoplastic finite element method was simulated in this study. Several engineering assumptions were made to calculate the heat generation due to the electric resistance. The skin effect of the bar was taken into account for the heat generation. The approach was applied to simulate an artifical electric upsetting process for the exhaust valve of the ship engine.

Finite Element Simulation of a Pore Closing Process during Upsetting in Open Die Forging (자유단조에서 업세팅 공정 중 기공 압착 과정의 유한요소 시뮬레이션)

  • Lee, M.C.;Cho, J.H.;Choi, I.S.;Jang, S.M.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.79-83
    • /
    • 2008
  • We carry out three-dimensional simulation of pore closing processes during upsetting in open die forging. Several pores on a plane section of a cylindrical material are traced at the same time and the results of hydrostatic pressure and effective strain are discussed to reveal the parameters affecting pore closing phenomena. Five different sizes of pores are also investigated by simulation to reveal the pore size effect in pore closing during upsetting. AFDEX 3D is employed for this study.

  • PDF

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding (1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합)

  • Kang, S.H.;Lim, H.C.;Lee, H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.

Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength (1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

Effect of Flow Stress, Friction, Temperature, and Velocity on Finite Element Predictions of Metal Flow Lines in Forgings (유동응력, 마찰, 온도, 속도 등이 단조 중 단류선의 유한요소예측에 미치는 영향)

  • Choi, M. H.;Jin, H. T.;Joun, M. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, the effect of flow stress, friction, temperature, and velocity on finite element predictions of metal flow lines after cylindrical upsetting is presented. An actual three-stage hot forging process involving an upsetting step is utilized and experimental metal flow lines are measured to study the effect of the various process variables. It was found that temperature and velocity for reasonable values of friction have little influence on metal flow lines especially those located deep within the cylinder but that flow stress has a direct influence on the flow lines. It was shown that a pure power law material model cannot reflect the real flow stress of hot material because it underestimates the flow stress especially around the dead-metal zone for the upsetting of a cylindrical specimen. It is thus recommended that a proper lower limit of flow stress be assumed to alleviate this issue.

A Study on Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계에 관한 연구)

  • 김홍석;윤재웅;손일헌
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.586-593
    • /
    • 2004
  • A terminal pin, which is a part of high-voltage capacitors, has a plate-shaped head section with thickness of 0.8mm. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this study, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the lateral upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, in this study, three dimensional finite element analyses were applied to the lateral upsetting process in order to determine a proper diameter and height of the cylindrical billet. Once the geometry of the initial billet was determined, intermediate forging processes were designed by applying cold forging guidelines and the designed process sequence was verified by two dimensional finite element analysis. In addition, cold forging tryouts were conducted by using a die set, which was manufactured based on the designed process and finally we found that the part qualities were improved by the proposed cold forging process.

A study on the three-dimensional upsetting of non-prismatic blocks considering different frictional conditions at two flat dies (상하면의 마찰이 틀린 비직각주 소재의 3차원 업셋팅에 관한 연구)

  • 김종호;류민형;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.345-352
    • /
    • 1989
  • Upsetting of non-circular blocks is characterized by the three-dimensional deformation with lateral sidewise spread as well as axial bulging along thickness. A kinematically admissible velocity field for the upsetting of prismatic or non-prismatic blocks is proposed which considers the different frictional conditions at the top and bottom surfaces of a billet. From the proposed velocity field the upper-bound load and the deformed configuration are determined by minimizing the total power consumption with respect to some chosen parameters. Experiments are carried out with annealed SM 15C steel billets at room temperature for different billet shapes and frictional conditions. The theoretical predictions both in the forging load and the deformed configurations are shown to be in good agreement with the experimental observations. Therefore, the velocity field proposed in this work can be used for the prediction of forging load and deformation in upsetting of prismatic or non-prismatic blocks, considering the different frictional conditions at two flat dies.