• Title/Summary/Keyword: upper structures

Search Result 906, Processing Time 0.022 seconds

Relationship between Planthoppers (Nilaparvata lugens and Sogatella furcifera) and Rice Diseases (멸구류(類)(벼멸구 및 흰등멸구)와 수도병해(水稻病害)의 복합발생피해(複合發生被害)에 관(關)한 연구(硏究))

  • LEE, S.C.;Matias, D.M.;Mew, T.W.;Sorino, J.S.;Heinrichs, E.A.
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.65-70
    • /
    • 1985
  • The locational preference of the brown planthopper (BPH) Nilaparvata lugens ($St{\aa}l$) and the whitebacked plant hopper (WBPH) Sogatella furcifera(Horvath) was studied on rice cultivars IR22 and IR36 as an integral part of subsequent research on insect-fungal pathogen relationships. The BPH was observed to stay consistently on the basal portion while the WBPH showed a general preference for the upper portion regardless of varieties, rice growth stages and insect population density levels. The habitat preference of both species (BPH and WBPH) was found not to be affected by the presence of the other species when both species are present on the same host plant Five rice cultivars with different reactions to BPH biotype 2 were used in the study on BPH-Rhizoctonia solani relationship: IR22 and TN1 (susceptible); Triveni and ASD7 (moderately resistant); and IR42 (resistant). Test plants were inoculated with R. solani (Kuhn) $3{\sim}4$days after insect infestation. Sheath blight disease severity/incidence was significantly higher in the treatment where BPH+R. solani were together than in the treatment with only the pathogen. Symptom expression of the disease in the BPH-pathogen combination was faster and mycelial growth was more profuse inducing the formation of more infection structures. Regardless of varietal reaction to BPH biotype 2, the degree of hopperburn was significantly higher in the combination of the two pests as compared with that of BPH alone. There could be a synergistic relationship between the insect pest and the pathogen indicated by a positive interaction between the two species.

  • PDF

Re-review of the Structure of the Jeongsa-Kisun (Senior Envoy Ship) in the Joseon Dynasty from the Perspective of Professional Shipbuilding Engineering (조선통신사 정사 기선(騎船) 구조의 조선기술 연구)

  • HONG Sunjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.242-275
    • /
    • 2022
  • This study tries to reveal the structure of the "Kisun"(senior envoy ship) taken by senior envoys for the 10th to 12th visits to Japan from the perspective of professional shipbuilding engineering focusing on the theory of the ship in the travel logs of royal envoys to Japan (Sahaengrok) written by Joseon Tongsinsa that includes 12 visits to Japan for about 200 years from 1607 to 1811. The results of the study showed that the size of Kisun for the 10th to 12th envoy visits was 19 Pa (把) and a half in length and 6 Pa (把) and 2 Cheok (尺) in width. The height of the Sampan was found to be 2 Pa (把) and 1 Cheok (尺) based on records in Gyemisusarok and Jeungjeonggyorinji. The structure of Kisun was different for each visit but, it was found that Kisun was mainly composed of a main deck, bow (bow plate, stem plate), stern (stern plate), Sampan, Meonge (support), Garyong (support), Sinbang, Gungji, deck, two masts and sail, Gurejjak (mast support), Panok, stern Panok, Taru, dodger, anchor reel, stairs, rail, rudder, oar, and anchor. In addition, wood and iron nails were used together for connection. It was also found that the sail was made of herbage and cotton. This study found that Kisun, which was operated for the 10th and 12th envoy visits, was big in terms of length and height among the Joseon Tongsinsa fleet to show the authority and dignity of Joseon and that it had passages outside on the sides of the vessel and paddles were located between the sides and Panok structure and rails were installed on four sides on the Panok, improving stability and linear beauty. The walls of Panok were decorated with the royal Dancheong pattern and fancy murals. In addition, it was found that they wished for a safe voyage by drawing a demon face on the bow. Therefore, it was revealed that Kisun, which was taken by envoys as recorded in travel logs, was made by the state and equipped with structures and functions that enabled international voyages.

The significance and structural improvement of burial mound in Geonwonneung and Heonneung in the early Joseon Dynasty - Focusing on the Byeongpungsadaeseok and Nanganseok - (조선초 건원릉과 헌릉의 봉릉 구조개선과 의의 - 병풍사대석과 난간석을 중심으로 -)

  • SHIN Jihye
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.118-135
    • /
    • 2022
  • The primary purpose of this study is to estimate the structure of Byeongpungsadaseok (屛風莎臺石) and Nanganseok (欄干石) in Geonwonneung (建元陵) and Heonneung (獻陵), which were built in the early of 15th century, based on the Annals of King Sejong. In addition, the ultimate purpose of this study is to reveal structural changes and their significance by comparing the differences with the contents of the dismantlement survey. Geonwonneung, Jereung(齊陵), and Heonneung were repaired at the same time in 1442, and the structural changes were the similar. The purpose of the repair in 1442 was to prevent water from flowing into the underground palace with smooth drainage. As a result of estimating the structure of Geonwonneung and Heonneung according to the records of the Annals of King Sejong, it was created in a very similar form to the Hyeonneung and Jeongneung of Goryeo. And it was clearly recognized that the Royal Tomb of Goryeo was followed. However, as the structure was improved in 1442, the unique characteristics of the Royal Tomb of the Joseon Dynasty were formed. First is the appearance of the Bokbuhyeong lime (覆釜形石灰, which is a convex roof on the Byeongpungsadaseok that serves to prevent rainwater from penetrating into the burial mound. It also plays a role in connecting and fixing the Manseok (滿石) and the Inseok (引石), which are the upper structures of the Sadaseok (莎臺石). Second, the Bakseok (薄石) between the nanganseok and the sadaseok has been transformed into the Sangseok (裳石) with a slope. This plays a role in protecting the inner stone chamber by expanding the length of the bakseok, which forms an overall slope, like the eaves of the roof. After both of these features were first attempted in 1442, they were applied to all Royal Tombs of the Joseon Dynasty and became unique features of these Royal Tombs.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Studies on the Assumption of the Locations and Formational Characteristics in Yigye-gugok, Mt. Bukhansan (북한산 이계구곡(耳溪九曲)의 위치비정과 집경(集景) 특성)

  • Jung, Woo-Jin;Rho, Jae-Hyun;Lee, Hee-Young
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.3
    • /
    • pp.41-66
    • /
    • 2017
  • The purpose of this research is to empirically trace the junctures of Yigye-gugok managed by Gwan-am Hong Gyeong-mo, a grandson of Yigye Hong Yang-ho who originally designed Yigye-gugok, while reviewing the features of the forms and patterns of gugok. The results of the research are as follows. 1. Ui-dong was part of the domain of the capital during the Chosun dynasty, which also is located in the city of Seoul as a matter of administrative zone. Likewisely, Yigye-gugok is taken as a special meaning for it was one and only gugok. Starting with Mangyeong Waterfall as the $1^{st}$ gok, Yigye follows through the $2^{nd}$ gok of Jeokchwibyeong Rock, the $3^{rd}$ gok of Chanunbong Peak, the $4^{th}$ gok of Jinuigang Rock, the $5^{th}$ gok of Okkyeongdae Rock, the $6^{th}$ gok of Wolyeongdam Pond, the $7^{th}$ gok of Tagyeongam Rock, the $8^{th}$ gok of Myeongoktan Stream, and the $9^{th}$ gok of Jaeganjeong Pavilion. Of these, Mangyeong Waterfall, Chanunbong Peak, and Okkyeongdae Rock are distinct for their locations in as much as their features, while estimated locations for Jinuigang Rock, Wolyeongdam Pond, Myeongoktan Stream, and Jaeganjeong Pavilion were discovered. However, Jeokchwibyeong Rock and Tagyeongam Rock demonstrated multiple locations in close resemblance to documentary literatures within secretive proximity, whereas geography, scenery, and sighted objects were considered to evaluate the 1st estimated location. Through these endeavored, it was possible to identify the shipping routes and structures for the total distance of 2.1km running from the $1^{st}$ gok to the $9^{th}$ gok, which nears Gwanam's description of 5ri(里), or approximately 1.96km for gugok. 2. Set towards the end of the $18^{th}$ century, Yigye-gugok originated from a series of work shaping the space of Hong Yang-ho's tomb into a space for the family. Comparing Yigye-gugok to other gugoks, numerous differences are apparent from beyond the rather more general format such as adjoining the $8^{th}$ gok while paving through the lower directions from the upper directions of the water. This gives rises to the interpretation such that Yigye-gugok was positioned to separate the doman of the family from those of the other families in power, thereby taking over Ui-dong. Yet, the aspect of the possession of the space lends itself to the determination that the location positioned at the $8^{th}$ gok above Mangyeongpok Waterfall representing Wooyi-dong was a consequence of the centrifugal space creation efforts. 3. While writings and poetic works were manufactured in such large quantities in Yigye-gugok whose products of setters and managers seemed intended towards gugok-do and letters carved on the rocks among others, there is yet a tremendous lack of visual media in the same respect. 'Yigye-gugok Daejacheop' Specimens of Handwriting offers the traces of Gwanam's attempts to engrave gakja at the food of Yigye-gugok. This research was able to ascertain that 'Yigye-gugok Daejacheop' Specimens of Handwriting was a product of Hong Yang-ho's collections maintained under the auspices of the National Central Museum, which are renowned for Song Shi-yeol's penmanship.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.